

Dynegy Midwest Generation, LLC 1500 Eastport Plaza Drive Collinsville, IL 62234

December 1, 2023

Illinois Environmental Protection Agency
DWPC – Permits MC#15
Attn: 35 I.A.C. § 845.650(e) Alternative Source Demonstration Submittal
1021 North Grand Avenue East
P.O. Box 19276
Springfield, IL 62794-9276

Re: Vermilion Power Plant New East Ash Pond; IEPA ID # W1838000002-04

Dear Mr. LeCrone:

In accordance with Title 35 of the Illinois Administrative Code (35 I.A.C.) Section (§) 845.650(e), Dynegy Midwest Generation, LLC (DMG) is submitting this Alternative Source Demonstration (ASD) for exceedances observed from the Quarter 2 2023 sampling event at the Vermilion Power Plant New East Ash Pond, identified by Illinois Environmental Protection Agency (IEPA) ID No. W1838000002-04.

This ASD is being submitted within 60 days from the date of determination of an exceedance of a groundwater protection standard (GWPS) for constituents listed in 35 I.A.C. § 845.600. As required by 35 I.A.C. § 845.650 (e)(1), the ASD was placed on the facility's website within 24 hours of submittal to the agency.

One hard copy is provided with this submittal.

Sincerely,

Dianna Tickner

Sr. Director – Decommission and Demolition

Dianna Sichner

Enclosures

Alternate Source Demonstration, Quarter 2 2023, New East Ash Pond Vermilion Power Plant

6555 SIERRA DRIVE IRVING, TEXAS 75039 o 214-812-4600 VISTRACORP.COM

Intended for

Dynegy Midwest Generation, LLC

Date

December 1, 2023

Project No.

1940103649-014

35 I.A.C. § 845.650(E): ALTERNATIVE SOURCE DEMONSTRATION

NEW EAST ASH POND
VERMILION POWER PLANT
OAKWOOD, ILLINOIS
IEPA ID: W1838000002-04

CERTIFICATIONS

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tla¢hac

Qualified Professional Engineer

062-063091

Illinois

Ramboll Americas Engineering Solutions, Inc.

Date: December 1, 2023

I, Brian G. Hennings, a professional geologist in good standing in the State of Illinois, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used other than for its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Brian G. Hennings
Professional Geologist

196-001482

Illinois

Ramboll Americas Engineering Solutions, Inc.

Date: December 1, 2023

CONTENTS

1.	Introduction	5				
2.	Background	6				
2.1	Site Location and Description	6				
2.2	Description of New East Ash Pond CCR Unit	6				
2.3	Geology and Hydrogeology	6				
2.3.1	Site Hydrogeology	6				
2.3.2	Regional Bedrock Geology	7				
2.4	Groundwater and NEAP Monitoring	7				
3.	Lines of Evidence that Potential Groundwater Protection					
	Standard Exceedances are not Related to the NEAP	8				
3.1	LOE #1: The Ionic Composition of Bedrock Groundwater is					
	Different Than the Ionic Composition of Porewater and Consistent					
	with Published Observations for Pennsylvanian Bedrock	9				
3.2	LOE #2: Concentrations of Chloride in the NEAP Porewater are					
	Lower than Those Observed in the Groundwater	10				
3.3	LOE #3: A Bedrock Solids and Geochemical Evaluation Identified					
	Naturally Occurring Shales as the Source of Lithium and Chloride					
	Exceedances at 35D and 70D	11				
3.4	LOE #4: A Bedrock Solids and Geochemical Evaluation Identified					
	Naturally Occurring Coal Seams as the Source of the Sulfate					
	Exceedance at 35D Due to Regional Upward Vertical Hydraulic					
	Gradients in the Shale Bedrock	12				
3.5	LOE #5: Isotopic Analysis of Groundwater from the Bedrock and					
	Overlying Quaternary Deposits Indicate that Bedrock Groundwater					
	is Between 13,000 and 35,000 years Older Than Groundwater in					
	the Quaternary Deposits; and, Bedrock Groundwater is Isolated					
	from the Groundwater in the Quaternary Deposits	12				
4.	Conclusions	15				
5.	References	16				

TABLES (IN TEXT)

Table A Isotopic Data from ISGS Sampled Wells (Table 11 from ISGS 2022)

Table B Summary of Bedrock Well Screen Elevations and Lithology

FIGURES (IN TEXT)

Figure A Contribution of each major ion to TDS at wells 35D and 70D

Figure B Piper Diagram
Figure C Chloride Box Plot

FIGURES (ATTACHED)

Figure 1 Potentiometric Surface Map – June 19, 2023

Figure 2 Monitoring Well Location Map with Results of Carbon-14 Age Dating

APPENDICES

Appendix A Geosyntec Consultants, 2023. Technical Memorandum: Evaluation of Alternative

Sources within Aquifer Solids, Vermilion Power Plant - New East Ash Pond. October 26,

2023.

ACRONYMS AND ABBREVIATIONS

35 I.A.C. Title 35 of the Illinois Administrative Code

ASD Alternative Source Demonstration

BCU Bedrock Confining Unit
CCR coal combustion residuals

DMG Dynegy Midwest Generation, LLC

E001 Event 1

EPRI Electric Power Research Institute
GMP Groundwater Monitoring Plan
GWPS groundwater protection standard

HCR Hydrogeologic Site Characterization Report

ISGS Illinois State Geological Survey

IQR interquartile range LOE(s) line(s) of evidence mg/L milligrams per liter

Middle Fork Middle Fork of the Vermilion River
NAVD88 North American Vertical Datum of 1988

NEAP New East Ash Pond

PCA principal component analysis

Ramboll Ramboll Americas Engineering Solutions, Inc.

SEP sequential extraction procedure

SI surface impoundment SSL statistically significant level

TDS total dissolved solids

TU tritium units

UCU Upper Confining Unit

UU Upper Unit

VPP Vermilion Power Plant

1. INTRODUCTION

Under Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.650(e), within 60 days from the date of determination of an exceedance of a groundwater protection standard (GWPS) for constituents listed in 35 I.A.C. § 845.600, an owner or operator of a coal combustion residuals (CCR) surface impoundment (SI) may complete a written demonstration that a source other than the CCR SI caused the contamination and the CCR SI did not contribute to the contamination, or that the exceedance of the GWPS resulted from error in sampling, analysis, statistical evaluation, natural variation in groundwater quality, or a change in the potentiometric surface and groundwater flow direction (Alternative Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Midwest Generation, LLC (DMG) by Ramboll Americas Engineering Solutions, Inc (Ramboll), to provide pertinent information pursuant to 35 I.A.C. § 845.650(e) for the Vermilion Power Plant (VPP) New East Ash Pond (NEAP) (*i.e.*, Site) located near Oakwood, Illinois.

The most recent quarterly sampling event (Event 1 [E001]) was completed on June 29, 2023, and analytical data were received on August 3, 2023. In accordance with 35 I.A.C. § 845.610(b)(3)(C), comparison of statistically derived values with the GWPSs described in 35 I.A.C. § 845.600 to determine exceedances of the GWPS was completed by October 2, 2023, within 60 days of receipt of the analytical data (Ramboll, 2023). The statistical comparison identified the following GWPS exceedances at compliance groundwater monitoring wells:

- Chloride at wells 35D and 70D
- Lithium at wells 35D and 70D
- Sulfate at wells 35D and 70S
- Total dissolved solids (TDS) at wells 35D and 70S

Pursuant to 35 I.A.C. § 845.650(e), the lines of evidence (LOE) presented in **Section 3** demonstrate that <u>sources other than the NEAP are the cause of the chloride, lithium, sulfate, and TDS GWPS exceedances at **wells 35D and 70D** listed above and the NEAP has not contributed to the exceedances.</u>

This ASD was completed by December 1, 2023, within 60 days of determination of the exceedances (October 2, 2023), as required by 35 I.A.C. § 845.650(e). This ASD has been completed in conformance with guidance provided in the Electric Power Research Institute (EPRI) guidance for development of ASDs at CCR sites (EPRI, 2017), and the United States Environmental Protection Agency (USEPA)'s Solid Waste Disposal Facility Criteria: Technical Manual (USEPA, 1993).

<u>Sulfate and TDS GWPS exceedances at **well 70S**</u> will be addressed in accordance with 35 I.A.C. § 845.660.

2. BACKGROUND

2.1 Site Location and Description

The former VPP is located four miles northeast of the Village of Oakwood in Vermilion County. The NEAP lies in the bottomlands of the Middle Fork of the Vermilion River (Middle Fork) and is bordered to the west by bluffs, to the south by unimproved DMG land, and to the north and east by the Middle Fork. Several underground coal mines and one surface mine were historically operated both beneath the NEAP and in the vicinity of the VPP.

2.2 Description of New East Ash Pond CCR Unit

The NEAP is a 29-acre inactive, unlined CCR SI constructed overtop a thick shale formation using berms constructed with a low-permeability clay core and cutoff walls keyed into the underlying shale formation.

The original East Ash Pond (1989 pond footprint) was constructed in 1989 and expanded in 2002 to form the present-day NEAP. The 1989 pond footprint was built overtop a thick shale formation which is greater than 80 feet thick in the vicinity of the ash ponds. The earthen berms on the north, east, and south sides of the 1989 pond footprint were constructed with a low-permeability clay core and cutoff walls keyed into the underlying shale formation. The cutoff walls extended approximately 8 feet into the underlying shale. A natural earthen bluff composed of low-permeability native clays formed the west side of the 1989 pond footprint.

New berms were constructed to expand the capacity of the 1989 pond footprint in 2002, forming the footprint of the present-day NEAP. The new berms raised the height of the original berms and were constructed with clay liners keyed into the underlying clay core. A cutoff trench backfilled with low permeability fill was placed along the western side slope of the enlarged NEAP. The low-permeability materials surrounding the footprint of the present-day NEAP form the existing containment system. The secondary pond was not expanded or modified as part of the 2002 NEAP expansion. The VPP ceased operations in 2011 when the power plant was retired.

2.3 Geology and Hydrogeology

2.3.1 Site Hydrogeology

Significant site investigation has been completed at the VPP to fully characterize the geology, hydrogeology, and groundwater quality as provided in the October 2021 operating permit application (Geosyntec, 2021), the January 2022 construction permit application (Geosyntec, 2022), and the Hydrogeologic Site Characterization Report (HCR; Ramboll, 2021a). These materials are incorporated herein. A site conceptual model has been developed and is discussed below.

In addition to the CCRs present in the NEAP, there are three different types of unlithified material present above the bedrock, which were categorized into hydrostratigraphic units in this report as follows:

• **Upper Unit (UU):** includes mixed Quaternary alluvial deposits of the Cahokia Alluvium described as sand with occasional layers of silty clay. The alluvial sand is generally a fine to medium sand that contains silts, clays, and gravels in varying amounts. This unit is present outside of the NEAP and in the bottomlands of the Middle Fork.

- **Upper Confining Unit (UCU):** consists of predominantly low permeability silty and clayey diamictons (glacial till) of the Wedron Formation with intermittent sand layers and lenses. This unit is present outside of the NEAP and along the western bluff of the Middle Fork.
- **Bedrock Confining Unit (BCU):** lowermost unit identified at the site and underlies all unlithified deposits. This unit occurs within Pennsylvanian shale which is the uppermost lithified unit at the Site.

None of the hydrostratigraphic units described above have been identified as an aquifer. However, the Upper Unit and BCU have been identified as potential migration pathways (PMPs).

Groundwater flow direction and gradients toward the Middle Fork have not changed significantly since the hydrogeologic study of the NEAP was completed in 2003 (Ramboll, 2021a; Kelron, 2003), and recent data supports the existing conceptual site model. A bedrock potentiometric surface map for June 19, 2023, is presented in **Figure 1**.

2.3.2 Regional Bedrock Geology

Regional investigations of the Illinois Basin have identified bedrock (specifically brines within the bedrock formations) as a source of chloride in groundwater (Kelley et al, 2012; Panno et al, 2018). Studies by Cartwright (1970) and Siegel (1989) indicate that groundwater migrates toward the center of the Illinois Basin and discharges upward through overlying confining units. The "Saline groundwater and brines can be brought near or to the land surface by natural conditions, such as migrating up prominent fractures and/or faults in bedrock, or by anthropogenic activities, such as exploration for and exploitation of petroleum. The mixing of upward-migrating saline groundwater with fresh groundwater from shallow aquifers can make groundwater from private wells undrinkable and can present a very expensive problem for municipalities (Panno and Hackley, 2010). Illinois State Geological Survey reporting includes 31 chloride results from available water samples (including some samples from VPP) which range from 2.1 to 30,269 milligrams per liter (mg/L) with mean value of 1,689 mg/L and median of 13 mg/L (Illinois State Geological Survey [ISGS] 2002). The report also concludes that water from the wells completed in shale contained higher concentrations of aluminum, barium, bromide, boron, chloride, fluoride, iron, lithium, potassium, sodium, and strontium. Tritium and carbon-14 age dating has demonstrated that groundwater from the bedrock is significantly older than that from the shallow Quaternary deposits (Kelron, 2003; ISGS, 2002).

2.4 Groundwater and NEAP Monitoring

The monitoring system for the NEAP was established in the Groundwater Monitoring Plan (GMP; Ramboll, 2021b) and consists of monitoring wells installed in the UU, UCU, and BCU, including background monitoring wells 10 and 22, located west of the NEAP, and compliance monitoring wells 16A, 16B, 35S, 35D, 70S, 70D, 71S and 71D (**Figure 1**). NED1 (installed in CCR) is used to collect porewater samples and monitor water levels within the NEAP.

3. LINES OF EVIDENCE THAT POTENTIAL GROUNDWATER PROTECTION STANDARD EXCEEDANCES ARE NOT RELATED TO THE NEAP

As allowed by 35 I.A.C. § 845.650(e), this ASD demonstrates that sources other than the NEAP (the CCR unit) caused the exceedances at 35D (chloride, lithium, sulfate, and TDS) and 70D (chloride and lithium) and the NEAP did not contribute to the exceedances. Specifically, the following LOEs conclude that the chloride and lithium exceedances at 35D and 70D are due to groundwater interactions with the bedrock, and that the sulfate exceedance at 35D is due to influence from historic coal mining activities. LOEs supporting this ASD include the following:

- 1. The ionic composition of bedrock groundwater is different than the ionic composition of porewater and consistent with published observations for Pennsylvanian Bedrock.
- 2. Concentrations of chloride in the NEAP porewater are lower than those observed in the groundwater.
- 3. A bedrock solids and geochemical evaluation identified naturally occurring shales as the source of lithium and chloride exceedances at 35D and 70D.
- 4. A bedrock solids and geochemical evaluation identified naturally occurring coal seams as the source of the sulfate exceedance at 35D due to regional upward vertical hydraulic gradients in the shale bedrock.
- 5. Isotopic analysis of groundwater from the bedrock and overlying Quaternary deposits indicate that bedrock groundwater is between 13,000 and 35,000 years older than groundwater in the Quaternary deposits; and bedrock groundwater is isolated from the groundwater in the quaternary deposits.

These LOEs are described and supported in greater detail below.

Since the major contributors to TDS are chloride and sulfate at 70D and 35D (respectively), the LOEs that apply to chloride and sulfate also apply to TDS. **Figure A** (on the following page) shows boxplots summarizing the relative contribution of each major ion to TDS in groundwater from wells 35D and 70D since 2021. Box plots graphically represent the range of a given dataset using lines to construct a box where the lower line, midline, and upper line of the box represent the values of the first quartile, median, and third quartile values, respectively. The minimum and maximum values of the dataset (excluding outliers) are illustrated by whisker lines extending beyond the first and third quartiles of (*i.e.*, below and above) the box plot. The interquartile range (IQR) is the distance between the first and third quartiles. Outliers (values that are at least 1.5 times the IQR away from the edges of the box) are represented by single points plotted outside of the range of the whiskers. **Figure A** shows that chloride has the greatest contribution to TDS concentrations at 70D (median of 42 percent) and sulfate has the greatest contribution to TDS at 35D (median of 42 percent).

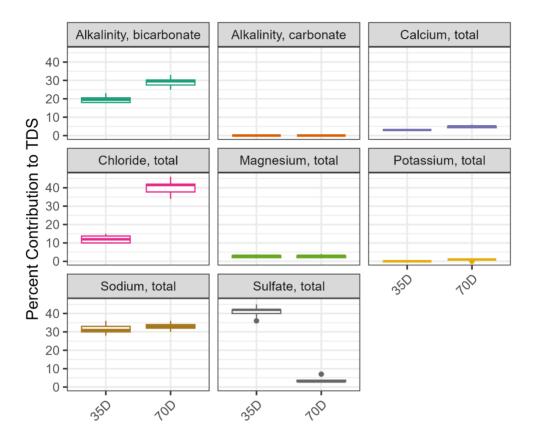


Figure A. Contribution of each major ion to TDS at wells 35D and 70D.

3.1 LOE #1: The Ionic Composition of Bedrock Groundwater is Different Than the Ionic Composition of Porewater and Consistent with Published Observations for Pennsylvanian Bedrock

Piper diagrams graphically represent ionic composition of aqueous solutions. A Piper diagram displays the position of water samples with respect to their major cation and anion content on the two lower triangular portions of the diagram, providing the information which, when combined on the central, diamond-shaped portion of the diagram, identify composition categories or groupings (hydrochemical facies). **Figure B** below is a Piper diagram that displays the ionic composition of samples collected from the bedrock background and bedrock compliance wells associated with the NEAP (sampled June 20 and 29, 2023), and porewater sampling location associated with the NEAP (sampled August 17, 2021).

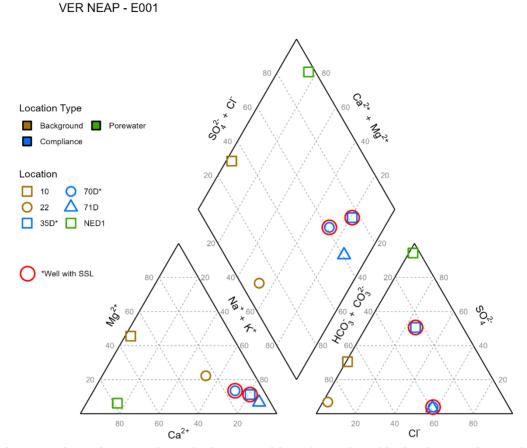


Figure B. Piper Diagram. Shows ionic composition of samples of bedrock groundwater (collected June 20 and 29, 2023) and porewater associated with the NEAP (collected on August 17, 2021).

It is evident from the piper diagram (**Figure B**) that porewater from the NEAP (green symbol) is primarily in the calcium-sulfate hydrochemical facies, while the bedrock groundwater samples (blue symbols) are in the sodium-chloride hydrochemical facies. The background BCU sample (brown symbol) is in the sodium-bicarbonate hydrochemical facies. The background BCU sample is collected from well 22, which is screened at from 556 to 576 feet North American Vertical Datum 1988 (NAVD88), and wells 35D and 70D are screened at lower elevations (536 to 546 feet NAVD88 and 541 to 551 feet NAVD88, respectively). Groundwater from deeper in Pennsylvanian aquifers tends to be more dominant in chloride, and groundwater may change from a sodium-bicarbonate to a sodium-chloride facies over small changes in depth (Lloyd and Lyke 1995). Therefore, compliance groundwater samples have a different ionic composition than porewater and a composition relative to background that is consistent with expected changes due to screen depth, indicating that NEAP porewater is not the source of CCR constituents detected in wells 35D or 70D.

3.2 LOE #2: Concentrations of Chloride in the NEAP Porewater are Lower than Those Observed in the Groundwater

A box plot of chloride concentrations in compliance monitoring wells 35D and 70D and porewater well NED1 is provided in **Figure C** on the following page. Chloride concentrations are lower in

NEAP porewater samples¹ collected during 2021 than in compliance groundwater samples collected from wells 35D and 70D from 2021 to 2023. The maximum concentration of chloride detected in NEAP porewater (44 mg/L) is lower than the minimum concentration of chloride in 35D (199 mg/L) or 70D (317 mg/L). In addition, median concentrations of chloride in wells 35D and 70D are 15 and 27 times greater, respectively, than the median chloride of 25 mg/L in NEAP porewater. Therefore, the NEAP cannot be the source of the elevated chloride concentrations observed in 35D and 70D.

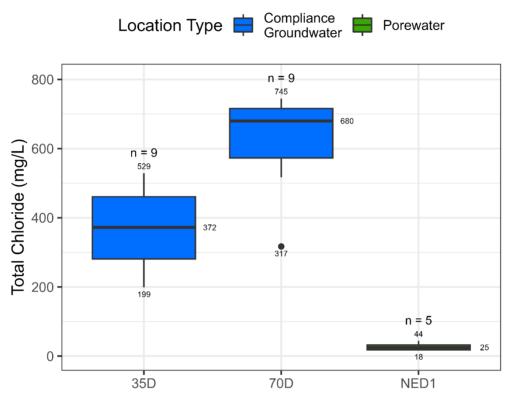


Figure C. Chloride Box Plot. The sample size (n), maximum, median, and minimum values are

3.3 LOE #3: A Bedrock Solids and Geochemical Evaluation Identified Naturally Occurring Shales as the Source of Lithium and Chloride Exceedances at 35D and 70D

Appendix A presents the results of additional analysis performed in 2023 by Geosyntec. Their evaluation of site-specific solid phase compositions and geochemical conditions, multivariate statistical analyses, and literature review of Pennsylvanian-aged shale bedrock groundwaters identified naturally occurring lithium and chloride associated with shales as the alternative source of these constituents to the groundwater at 35D and 70D based on the following observations:

¹ CCR porewater most accurately represents the mobile constituents associated with the waste management activity within the CCR SI (EPRI, 2017). The composition of CCR porewater accumulated at the base of the CCR unit, which is derived from, and represents contact with, CCR material above and around the well screen, is the truest representation of mobile constituents throughout the CCR SI.

- Sequential extraction procedure (SEP) analyses demonstrated that much of the lithium in the solid phase is associated with the fractions which correlate to primary minerals such as micas and clay minerals, as well as the fractions associated with sulfides and oxide minerals.
- Geochemical conditions in the groundwater support desorption or dissolution of the sulfide and iron oxide mineral phases that host lithium.
- X-ray diffraction confirmed the presence of abundant micas and clay minerals, which host native lithium, in the shale bedrock.
- Groundwater chloride concentrations observed in Pennsylvanian-age shale bedrock aquifers are comparable to or higher than those observed at wells 35D and 70D.
- Principal component analysis (PCA) shows that BCU well groundwater is distinct from CCR porewater.
- 3.4 LOE #4: A Bedrock Solids and Geochemical Evaluation Identified
 Naturally Occurring Coal Seams as the Source of the Sulfate Exceedance
 at 35D Due to Regional Upward Vertical Hydraulic Gradients in the Shale
 Bedrock

Appendix A presents an evaluation of the geochemistry at 35D in the context of previously reported site conditions. This data demonstrates that elevated sulfate concentrations at 35D are the result of influence from a major coal seam in the bedrock based on the following observations:

- The coal seam mined near the site has been previously characterized and contains both iron sulfide minerals and siderite (FeCO3), which is evidence of rapid oxidation of the iron sulfide minerals.
- The groundwater chemistry at 35D suggests that siderite and the iron oxide mineral ferrihydrite are in a state of dynamic equilibrium, consistent with weathering of pyrite to siderite to ferrihydrite.
- Oxidation of sulfide minerals releases sulfate to the groundwater.
- Strong upward groundwater hydraulic gradients are present within the bedrock that provide hydraulic connection between the coal seam the bedrock that well 35D is screened.
- 3.5 LOE #5: Isotopic Analysis of Groundwater from the Bedrock and Overlying Quaternary Deposits Indicate that Bedrock Groundwater is Between 13,000 and 35,000 years Older Than Groundwater in the Quaternary Deposits; and, Bedrock Groundwater is Isolated from the Groundwater in the Quaternary Deposits

In 2002 ISGS and Dynegy collected groundwater samples from 8 monitoring wells and tested the samples for carbon-14 and hydrogen-3 (tritium) (ISGS, 2002). Six of the monitoring wells (25, 26, 27, 28, 29, and 30) were located adjacent to the NEAP (**Figure 2**). Wells 26 and 28 had well screens that intersected Quaternary deposits of the UU and the remaining wells were screened in shallow shale bedrock. Results of the testing are presented in Table 11 of the ISGS report included below as **Table A** and on **Figure 2**.

Table A. Isotopic Data from ISGS Sampled Wells (Table 11 from ISGS, 2002)

Table 11. Isotopic data for ISGS sampled wells

Parameter	Units	Well Number							
		1349	25531	KELRON 25	KELRON 26	KELRON, 27	KELRON 28	KELRON 29	KELRON 30
14C	RYBP	2,180	21,160	13,920	210	19,400	modern	34,610	20,850
	% modern carbon	76	7.2	18	97	8.9	102	1.4	7.5
Tritium	TU	7.8	< 0.43	< 0.43	5.3	< 0.43	5.8	< 0.52	< 0.43

¹⁴C = carbon-14

RYBP = Radiocarbon Years Before Present

TU = tritium units

Tritium is generated in the atmosphere and decays in the isolated subsurface. Water with tritium concentrations greater than 5 tritium units (TU) is considered to be recent, while water with nondetectable tritium concentrations is considered to be greater than 50 years old (ISGS, 2002). Groundwater collected from shallow Quaternary deposits is recent (TU>5), while groundwater from the shallow bedrock is older (no tritium detected). The tritium results are consistent with the carbon-14 results, which indicate that the shallow bedrock wells contain an inorganic carbon signature substantially older than that from wells screened in the Quaternary deposits. Groundwater collected from wells screened in shallow bedrock in the vicinity of the NEAP (wells 25, 27, 29, and 30) had estimated ages ranging from 13,920 to 34,610 years based on carbon-14 age dating. This is in contrast to groundwater collected from wells 26 and 28 (screened in the Quaternary deposits) which had estimated ages of less than 210 years. These results indicated to ISGS that the wells that "draw water from the bedrock are either only slightly connected to or completely isolated from the local groundwater flow system [overlying Quaternary deposits]".

In addition to the spatial location of the wells tested for carbon-14 and tritium relative to the NEAP, the elevations of the well screens and lithology of the age dated wells overlap with the well screen elevations and lithology of wells 35D and 70D which contain the GWPS exceedances (**Table B**) with the exception of MW30, which is screened at a lower elevation than all of the other wells.

Table B. Summary of Bedrock Well Screen Elevations and Lithology

Well ID	Screen Elevation (feet NAVD88)	Lithology		
MW35D – exceedance well	546 to 536	shale bedrock		
MW70D - exceedance well	550 to 540	shale bedrock		
MW25	560 to 540	shale bedrock		
MW27	557 to 537	shale bedrock		
MW29	558 to 538	shale bedrock		
MW30	519 to 499	shale bedrock		

This data demonstrates that bedrock groundwater in the vicinity of the NEAP is isolated from the overlying Quaternary deposits and the NEAP is not the source of exceedances to the GWPS in bedrock compliance wells 35D and 70D.

4. CONCLUSIONS

Based on these five LOEs, it has been demonstrated that the NEAP is not the source of the chloride, lithium, sulfate, and TDS GWPS exceedances in wells 35D and 70D and has not contributed to exceedances identified during the first quarterly sampling event. The chloride and lithium exceedances are due to groundwater interactions with the bedrock, and the sulfate exceedance is due to influence from historic coal mining activities. Because the major contributors to TDS are chloride and sulfate, LOEs that apply to chloride and sulfate also apply to TDS.

- 1. The ionic composition of bedrock groundwater is different than the ionic composition of porewater and consistent with published observations for Pennsylvanian Bedrock.
- 2. Concentrations of chloride in the NEAP porewater are lower than those observed in the groundwater.
- 3. A bedrock solids and geochemical evaluation identified naturally occurring shales as the source of lithium and chloride exceedances at 35D and 70D.
- 4. A bedrock solids and geochemical evaluation identified naturally occurring coal seams as the source of the sulfate exceedance at 35D due to regional upward vertical hydraulic gradients in the shale bedrock.
- 5. Isotopic analysis of groundwater from the bedrock and overlying Quaternary deposits indicate that bedrock groundwater is between 13,000 and 35,000 years older than groundwater in the Quaternary deposits; and, bedrock groundwater is isolated from the groundwater in the quaternary deposits.

This information serves as the written ASD prepared in accordance with 35 I.A.C. § 845.650(e), demonstrating that the chloride, lithium, sulfate, and TDS exceedances observed at wells 35D and 70D during the first quarterly sampling event were not due to the NEAP and are attributable to natural groundwater interactions with bedrock and historic coal mining. Therefore, assessment of corrective measures is not required for these constituents at the NEAP.

5. REFERENCES

Cartwright, K., 1970. Groundwater discharge in the Illinois Basin as suggested by temperature anomalies. Water Resources Research 6, No. 3: 912-918.

Electric Power Research Institute (EPRI), 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites. EPRI, Palo Alto, CA. 3002010920.

Geosyntec Consultants (Geosyntec), 2021. Initial Operating Permit Application, Vermilion Power Plant, New East Ash Pond, Oakwood Illinois, October 2021.

Geosyntec Consultants (Geosyntec), 2022. Construction Permit Application, Vermilion Power Plant, New East Ash Pond, Oakwood Illinois, January 2022.

Geosyntec Consultants (Geosyntec), 2023. Technical Memorandum: Evaluation of Alternative Sources within Aguifer Solids, Vermilion Power Plant – New East Ash Pond. October 26, 2023.

Illinois Administrative Code, Title 35, Subtitle G, Chapter I, Subchapter J, Part 845: Standards for The Disposal Of Coal Combustion Residuals In Surface Impoundments, effective April 21, 2021.

Illinois State Geological Survey (ISGS), 2002. *The Geochemistry of Groundwater from the Shallow Bedrock in Central Vermilion County, Illinois.* Open-File Series Report 2002-4.

Kelley, Walton R., Samuel V. Panno, and Keith Hackley, 2012. The Sources, Distribution, and Trends of Chloride in the Waters of Illinois. Prairie Research Institute. University of Illinois at Urbana-Champaign. March 2012.

Kelron Environmental (Kelron), 2003. *Regional and Local Hydrogeology and Geochemistry, Vermilion Power Plant, Illinois*. Dynegy Midwest Generation, LLC, November 2003.

Lloyd, O. B., and W. L. Lyke, 1995. Ground Water Atlas of the United States – Illinois, Indiana, Kentucky, Ohio, Tennessee. HA-730K. United States Geological Survey.

Panno, S.V., and K.C. Hackley, 2010. Geologic influences on water quality. In *Geology of Illinois*, ed. D.R. Kolata and C.K. Nimz, 337-350. Champaign, Illinois: Illinois State Geological Survey.

Panno, S.V., Askari, Z., Kelly, W.R., Parris, T.M. and Hackley, K.C., 2018. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States. Groundwater, 56: 32-45.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021a. *Hydrogeologic Site Characterization Report, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois*. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021b. *Groundwater Monitoring Plan, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois.* October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021c. *History of Potential Exceedances, New East Ash Pond, Vermilion Power Plant, Oakwood, Illinois.* October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021d. *Hydrogeologic Site Characterization Report, North Ash Pond and Old East Ash Pond, Vermilion Power Plant, Oakwood, Illinois*. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances: Quarter 2, 2023. New East Ash Pond (NEAP), Vermilion Power Plant, Oakwood, Illinois. October 2, 2023.

Siegel, D.I., 1989. Geochemistry of the Cambrian-Ordovician Aquifer System in the Northern Midwest, U.S. Geological Survey Professional Paper 1405-D, 76p.

United States Environmental Protection Agency (USEPA), 1993. Solid Waste Disposal Facility Criteria: Technical Manual EPA530-R-93-017. Solid Waste and Emergency Response (5305). November 1993.

FIGURES

COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL PORE WATER WELL ★ MONITORING WELL GROUNDWATER ELEVATION CONTOUR (10-FT CONTOUR INTERVAL, NAVD88) - - - INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION REGULATED UNIT (SUBJECT UNIT)

SITE FEATURE

1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

2. ELEVATIONS IN BRACKETS WERE OBTAINED OUTSIDE OF THE 24 HOUR PERIOD FROM INITIATION OF DEPTH TO GROUNDWATER
MEASUREMENTS BUT WITHIN THE SAME SAMPLING EVENT.

3. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988

150 300

POTENTIOMETRIC SURFACE MAP **JUNE 19, 2023**

ALTERNATIVE SOURCE DEMONSTRATION NEW EAST ASH POND

VERMILION POWER PLANT OAKWOOD, ILLINOIS

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

MONITORING WELL LOCATION MAP WITH RESULTS OF CARBON-14 AGE DATING

ALTERNATIVE SOURCE DEMONSTRATION
NEW EAST ASH POND
VERMILION POWER PLANT

OAKWOOD, ILLINOIS

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

RAMBOLL

PROJECT: 169000XXXX | DATED: 11/28/2023 | DE

Service Laver Credit

APPENDICES

APPENDIX A
GEOSYNTEC CONSULTANTS, 2023. TECHNICAL
MEMORANDUM: EVALUATION OF ALTERNATIVE SOURCES
WITHIN AQUIFER SOLIDS, VERMILION POWER PLANT NEW EAST ASH POND. OCTOBER 26, 2023.

TECHNICAL MEMORANDUM

Date: November 30, 2023

To: Brian Voelker, Dynegy Midwest Generation, LLC

Copies to: Stu Cravens and Phil Morris, Dynegy Midwest Generation, LLC

Eric Tlachac and Brian Hennings, Ramboll

From: Allison Kreinberg and Ryan Fimmen, PhD, Geosyntec Consultants

Subject: Evaluation of Alternative Sources within Bedrock Solids

Vermilion Power Plant – New East Ash Pond

This document serves as an Appendix to the December 1, 2023, Alternative Source Demonstration (ASD) for the Vermilion Power Plant New East Ash Pond (NEAP) (Site) for the Quarter 2 2023 sampling event completed to fulfill the requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.650(e) (VER NEAP E001 ASD). A previous Evaluation of Potential Groundwater Protection Standard (GWPS) Exceedances prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) in January 2022 concluded that the potential GWPS exceedances of chloride, lithium, and total dissolved solids (TDS) at downgradient monitoring wells 35D and 70D could be attributed to sources other than the NEAP (Ramboll 2022). Geosyntec Consultants, Inc. (Geosyntec) has completed a review of geochemical and site conditions at the Site to evaluate the influence of the solid-phase mineralogy and geochemistry of the bedrock confining unit potential migration pathway ("bedrock") on groundwater composition. Using additional evidence from laboratory analyses and statistical evaluations, this technical memorandum demonstrates that naturally occurring lithium and chloride associated with bedrock underlying the Site is a source of lithium, chloride, and total dissolved solids (TDS) to Site groundwater. Additionally, this memorandum provides evidence that sulfate concentrations at well 35D can be attributed to the weathering of sulfur-bearing minerals within the coal seams in the Site lithology.

SITE CONDITIONS

Site geology consists primarily of unlithified alluvial and glacial deposits overlying shale bedrock that contains a major coal seam mined in the region. The alluvial deposits consist of the Cahokia Alluvium composed primarily of sand with occasional layers of silty clay and the Upper Till Unit (Wedron Formation and Glasford Formation Till) consisting of clay and silty clay with occasional sand lenses. The Cahokia Alluvium comprises the Upper Unit (UU) at the NEAP and is generally 10 to 25 feet thick. Below this unit is the Upper Confining Unit (UCU) that is comprised of the lower permeability Wedron and Glasford Formations. The UCU is of variable thickness, ranging from up to 100 feet west of the NEAP and absent east of the NEAP (Ramboll 2021).

The Bedrock Confining Unit (BCU), typically greater than 80 feet thick, consists of the Pennsylvanian-age Shelburn Formation, which is primarily a low permeability shale with thin limestone, sandstone, and coal beds. The top of the shale unit in the vicinity of the NEAP is described as highly weathered and decomposed. This unit contains the Danville (No. 7) Coal, which was encountered near the NEAP at approximately 80 to 100 feet below ground surface (ft bgs). Wells 35D and 70D are both screened within the BCU.

Groundwater within the BCU exhibits an upward hydraulic gradient and high dissolved mineral content (Ramboll 2021). Previous isotopic analyses by Kelron Environmental (Kelron) suggest that groundwater in the BCU is significantly older than the recent groundwater in the overlying unlithified deposits by approximately 13,000 to 35,000 radiocarbon years before present (Kelron 2003). Additional information regarding Site hydrogeology and stratigraphy is provided in the ASD prepared by Ramboll.

BEDROCK SOLIDS EVALUATION

Geosyntec reviewed the results of analyses completed on solid phase samples collected from the Site to evaluate if lithium and chloride concentrations in groundwater at wells 35D and 70D in excess of the GWPS could be derived from the native weathered shale bedrock lithology.

Samples were collected from soil borings advanced in June 2023 near two locations: compliance well 35D and compliance well 70D (**Figure 1**). Due to access limitations and health and safety considerations at the Site, the boring locations were adjusted in the field and are approximately 200-250 feet offset from the original well locations. Differences in ground surface elevations and bedrock dip were considered during drilling and sample selection so that the sampled intervals correspond with the well screen interval. Boring locations and well screen intervals are shown in the cross sections provided in **Attachment 2**. The material sampled for geochemical characterization is consistent with the material present in the well screens (gray weathered shale).

The field boring log for these soil borings are provided as **Attachment 2**. Soil boring logs and well construction logs for 35D and 70D are also included in **Attachment 2**. Two samples were collected from the boring near well 35D (VER-35), and three samples were collected from the boring near well 70D (VER-70) at various depths.

All samples were submitted for analysis of mineralogy via X-ray diffraction (XRD), and two samples from VER-35 (55-60 ft bgs and 60-63 ft bgs) and one sample from well VER-70¹ (75-80 ft bgs) were submitted for analyses of total lithium and lithium distribution within the bedrock using sequential extraction procedure (SEP). SEP is an analytical technique that uses progressively stronger reagents to solubilize metals from specific phases within the solid matrix and is used to infer associations between constituents and different classes of solids (Tessier et al. 1979). These classes of solids are identified based on their solubility under different reagents; the reagents are provided in **Attachment 3**. Analysis of chloride by SEP was not performed due to the high solubility of the chloride ion in solution.

Results for total and SEP analyses of lithium in these samples are presented in **Table 1** and the analytical laboratory reports are provided as **Attachment 3**. As a first step to evaluate data quality in an SEP analysis, the sum of individual extraction steps from the SEP was compared to the total lithium concentration. The sum of the SEP procedure is not expected to be exactly equal to the total metals analysis but should generally be consistent with the total metals analysis. The total lithium concentrations ranged from 39 micrograms per gram of material (μ g/g) to 42 μ g/g in the shale samples. The summed concentrations of lithium from the SEP analyses ranged from 45.3 to 50.8 μ g/g. The results were generally consistent between the total metals analyses and the summed SEP steps, indicating good metals recovery and data quality. These results are also consistent with previous samples collected at the Site (31.1-33.3 mg/kg, Ramboll 2021) and within the Danville coal (5.5-89 mg/kg, USGS 2002).

The results presented in **Table 1** demonstrate that lithium is associated with multiple solid phase components. The majority of the lithium was released via leaching steps associated with two reactive solid phase components: metal oxides (between 24 and 28%) and sulfides (between 28 and 31%). Lithium associated with oxides and sulfides may be mobilized via desorption or dissolution of these phases in the event of geochemical changes to the system due to the relative instability of oxide and sulfide minerals.

-

¹ Two samples from the unlithified units from VER-70 (30-40 ft bgs) and (41-42 ft bgs) are excluded from subsequent results tables and discussion to emphasize findings associated with shale lithologies in support of an assessment of naturally occurring lithium in bedrock.

Eh-pH diagrams were generated using groundwater data for well 35D (Figure 2) and well 70D (Figure 3) to evaluate groundwater conditions at these wells relative to the thermodynamic stability of iron oxide and iron sulfide minerals. As indicated on Figures 2 and 3, groundwater chemistry at both monitoring wells generally favor thermodynamic stability of the iron oxide phase. However, multiple samples from well 35D plot within the three-phase stability boundary between amorphous iron oxide Fe(OH)₃(ppd), the iron carbonate mineral siderite, and aqueous Fe²⁺ (Figure 2), indicating that groundwater at this well is experiencing dynamic equilibrium conditions in which chemical reactions between these phases may occur. Groundwater from well 70D indicates a preference for iron oxide phases (Fe(OH)₃(ppd)), although groundwater chemistry at this well may be trending towards iron carbonate (siderite) stability (Figure 3). Iron sulfide minerals such as pyrite are not predicted to be in a stable phase at either well; therefore, any existing sulfidic minerals within the bedrock would be expected to undergo oxidative dissolution. Lithium associated with the sulfide solid phase component (Table 1) would then become mobilized due to dissolution/desorption processes and resulting in an increase in aqueous lithium in groundwater. Similarly, dissolution of iron oxides would occur under variable equilibrium conditions and result in an increase in aqueous lithium in groundwater.

Notable abundances (31 to 37%) of lithium were also found to be associated with the final extraction of the analysis, which is typically considered to be associated with residual metals which are immobile and not readily soluble. The abundance of lithium within this residual fraction indicates association with inseparable primary mineral phases such as clay minerals (Tessier et al., 1979). Clay minerals are known to be common sorbents for naturally occurring lithium (Starkey 1982). Lithium is known to leach from lithium-hosting igneous rocks and micas through weathering processes. Mineral weathering reactions occurring in micas may result in lithium-rich micas transforming directly to illitic clays, and then to mixed-layer and smectite clays. The lithium within these primary minerals either becomes incorporated directly into the crystal structures of the clay minerals or is transported in water and later concentrated in brines through evaporation (Ronov et al. 1970). Lithium-enriched brines constitute a common origin of lithium in clay minerals, as eroded fine-grained materials (i.e., detrital clays) deposited in these brines are capable of hosting lithium within vacant sites in the octahedral layers comprising part of their crystal structures (Schultz 1969). Field lithologic descriptions of the samples from VER-35 and VER-70 indicate that the samples collected from these two locations consist of weathered shale, which is comprised primarily of mica and clay minerals that are known to be hosts of natural lithium.

Mineralogical analyses were completed using XRD to evaluate whole rock mineralogy and determine the abundance of iron oxide minerals, iron sulfide minerals, clay minerals, and micas within the bedrock solids. Whole rock mineralogy results are provided in **Table 2**. Sample mineralogy consists predominantly of quartz, mica (muscovite), feldspars (albite and microcline),

and clay minerals (illite, chlorite, and kaolinite) (**Table 2**). Of these minerals, muscovite and clays are known hosts of natural lithium within their crystal structures and comprise natural sources of lithium in the system (Zawidzki 1976; Starkey 1982). As indicated in **Table 2**, these minerals are present at large abundances in samples from well 35D and well 70D (between 43.0 to 47.4%), indicating that these lithium-host minerals occur in the BCU and constitute a natural source of aqueous lithium to groundwater.

While iron oxides were not identified via XRD, they are likely present in the system. Amorphous Fe(OH)₃(ppd), which is thermodynamically favored to form at the Eh and pH measured in groundwater (Figures 2 and 3), cannot be identified via XRD due to its lack of crystalline structure. However, the SEP results identified an abundance of iron in the leaching step associated with non-crystalline oxides (step 3; Attachment 3), and iron oxides are often present on clay surfaces due to the relationship between their surface charges (Ohtsubo 1989). As discussed above, the XRD analysis identified the presence of clay minerals within the shale (Table 2, Attachment 4). Thus, weathering reactions involving iron oxides likely constitute an additional natural source of aqueous lithium to groundwater.

As discussed above, the shale bedrock material consists predominantly of micas and clays which are known hosts of lithium within their crystal structures. The weathered nature of the shale bedrock material suggests that chemical weathering processes are likely occurring, the result of which supports the occurrence of weathering reactions involving metal oxide and sulfide minerals, as well as alteration reactions between mica and clay minerals and between different types of clay minerals. These reactions all represent processes by which lithium associated with the native geologic materials may become mobilized, contributing aqueous lithium to groundwater.

Similar to lithium, chloride occurs naturally within shale bedrock, which likely contributes to elevated chloride in groundwater. Because of the high solubility of chloride, it is not feasible to determine phase associations through SEP; however, studies within the region have found that groundwater chloride concentrations comparable to or higher than those observed at wells 35D and 70D are often found within the Pennsylvanian-aged shale bedrock. The mean chloride concentration in Pennsylvanian bedrock aquifers in the area reported by the Illinois State Geological Survey (ISGS) is 1,689 mg/L and a chloride maximum concentration of 30,269 mg/L was reported (ISGS 2002). Chloride concentrations observed in wells 35D and 70D are 251 mg/L and 492 mg/L, respectively. A USGS summary found that water within the upper parts of the Pennsylvanian-aged bedrock is generally similar throughout the Illinois and Indiana basins. This water is influenced by the interaction with the variable interbedded rock types present in the bedrock; it can vary from a sodium bicarbonate to a sodium chloride type within a few feet of change in depth (Lloyd and Lyke 1995).

Furthermore, seeps with high naturally occurring salinity (i.e., brines) are known to occur in southern Illinois. Samples of seeps and shallow wells affected by brine in Illinois had highly variable chloride concentrations ranging from ~100 mg/L up to more than 15,000 mg/L (Panno, et al. 2005). These results suggest that contact with Pennsylvanian-aged bedrock can result in natural variability in the reported chloride concentrations in groundwater at ranges consistent with those observed at the site.

STATISTICAL EVALUATION OF GROUNDWATER COMPOSITION

Advanced statistical analyses were employed to evaluate the similarity or dissimilarity among different groundwater samples or groups based on a broad suite of analytes. Dimensional reduction techniques, such as principal component analysis (PCA), are especially effective in identifying the analytes responsible for statistical differences between samples and revealing underlying patterns related to environmental factors, contamination sources, or other natural characteristics of the Site. Clustering methods were further utilized to group samples based on their combined chemical composition through maximizing intra-group similarity and minimizing inter-group similarity.

PCA is often used to simplify large datasets with multiple variables by creating new uncorrelated variables known as principal components (PCs). The PCs are linear combinations of the original variables; the first few PCs typically capture most of the variation within the dataset. Factor loadings are calculated based on the correlation between PCs and the original variables. As such, variables with notably higher positive or negative factor loadings are main drivers of similarity or dissimilarity and clustering of samples. Factor scores are calculated based on the correlation between the combined chemical composition of each sample and the PCs. Samples with similar chemical compositions show similar factor scores and tend to cluster together on a PCA plot.

In this study, the dataset used for PCA included 62 groundwater samples collected in 2021 and 2023 from upgradient wells (10 and 22), downgradient wells (70S, 71S, 70D, 71D, 16A, and 35D) and a porewater well (NED1).² PCA requires that input variables have similar scales of measurement and variances. As such, data were standardized by mean-centering and scaling to unit variance prior to performing PCA. Data were further square transformed to reduce the skewness of dataset. The fraction of total variation explained by each PC is shown in **Figure 4a**, with the first two PCs accounting for approximately 80 percent [%] of the total variation in the datasets. Additionally, the quality of representation of each variable is presented in **Figure 4b**. As

.

² Analytes included in the PCA include alkalinity, boron, calcium, pH, barium, chloride, and fluoride. The complete dataset used for PCA analysis is provided with this submission as **Attachment 5**.

illustrated in the figure, the first dimension is dominated by alkalinity, boron, and calcium, while the second dimension is dominated by fluoride, chloride, and barium.

PCA results are often visualized using biplots where samples are projected on to the first two PCs (i.e., factor scores), and factor loadings are represented as vectors. The closer the data points are on the graph, the greater the similarity in their chemical composition. The result from this study is shown on **Figure 5**, where the samples acquired from BCU are orange, UCU and UU are shades of blue, and the porewater samples are gray. The biplot suggests that porewater samples cluster relatively separately from the BCU, UCU, and UU samples. Additionally, the chemical signatures of groundwater samples from the BCU are different than combined group of UCU and UU samples, whereas the composition of upgradient samples from the UCU are similar to those from downgradient UU locations. Upgradient well 22 clusters more closely with the shallower UCU and UU wells. The PCA results indicate that the composition of the BCU groundwater samples is statistically different than that from the porewater, suggesting that the porewater is not the source of elevated lithium, chloride, and TDS to Site groundwater.

Furthermore, the factor loadings, represented as vectors on the biplot, suggest that constituents such as boron and carbonate alkalinity are responsible for the chemical signature of the porewater cluster. In contrast, chloride is one of the drivers for the distinct chemical composition of the BCU cluster.

Clustering was further explored using Ward's hierarchical clustering method, a distance measure employed in agglomerative algorithms and commonly applied in hydrogeochemical studies. The analysis was performed on a scaled and centered dataset. The results from clustering (**Figure 6**), align with findings from the PCA (**Figure 5**) and supported the distinction between porewater samples from downgradient and upgradient groundwater samples from BCU, UCU and UU. Furthermore, the distinct clustering of the BCU samples relative to the clustering of the UCU/UU samples suggests that chemical composition of groundwater samples is primarily influenced by their lithography rather than their relative locations to the CCR unit (i.e., upgradient or downgradient). These results support the conclusion that downgradient locations with lithium and chloride exceedances are not affected by the CCR unit, and their geochemistry is instead influenced by the native lithology.

SULFATE EVALUATION

Elevated sulfate concentrations have been observed in well 35D that are inconsistent with other BCU wells at the Site, as indicated by exceedances of the GWPS for sulfate at well 35D and not at other BCU wells. The PCA results shown in **Figure 5** indicate that for parameters other than sulfate (which was not included in the parameters evaluated in the PCA), the groundwater

chemistry from well 35D is similar to overall bedrock groundwater chemistry. As described above and in greater detail in the Site Hydrogeologic Characterization Report (Ramboll 2021), the BCU contains a major coal seam that has been mined in the vicinity of the NEAP. Samples of this coal were collected and analyzed by Kelron and the ISGS, and XRD results indicate that the coal contains up to 10% iron sulfide, primarily pyrite and marcasite (FeS₂) (Mehnert 2002). Pyrite and especially marcasite are unstable under oxidizing conditions and will readily undergo oxidative dissolution to form dissolved iron and sulfate. This mechanism of sulfate mobilization is further supported by the observation of the iron carbonate mineral siderite (FeCO₃), which was described as a "needle-like white precipitate above the coal in the core" which "is undoubtedly the result of this rapid oxidation" (Mehnert 2002). Siderite is also identified in the bedrock samples collected from borings VER-35 and VER-70 at concentrations ranging from 4.9 to 5.4 weight percent (**Table 2**).

Figure 2 shows the iron thermodynamic stability diagram for the well 35D groundwater. Groundwater pH and ORP data are plotted within the iron stability field, which illustrates that under these conditions, siderite and ferrihydrite are in a state of dynamic equilibrium. The weathering of pyrite to siderite to ferrihydrite would result in an increase in aqueous sulfate concentrations.

Furthermore, strong upward vertical hydraulic gradients are present within the BCU (Kelron 2003; Ramboll 2021). While it is estimated that the coal seam is deeper than the screened interval at well 35D, an upward vertical gradient would cause sulfate generated from sulfide oxidation in the coal to influence the groundwater composition at 35D. **Figure 7** shows the locations where coal and void space were observed during exploratory drilling for the historic coal mine (Kelron 2003). In boring locations B201 and B202, artesian conditions were observed, with water geysering more than 30 feet above ground surface at an estimated flow rate of greater than 100 gallons per minute when the fractured shale was penetrated as the borings were advanced (Kelron 2003). These field observations indicate that the high hydraulic head within the coal seam can influence overlying formations.

As noted above, isotopic analyses of tritium (³H) and radiocarbon (¹⁴C) suggest that the bedrock groundwater is significantly older than the shallower groundwater at the Site (Kelron 2003). Tritium concentrations in the groundwater from the overlying unlithified deposits are between 5.3 and 5.8 tritium units and can be classified as "recent water". Tritium concentrations in the bedrock were non-detect. The age of the bedrock groundwater ranges from approximately 13,000 to 35,000 years before present as determined by radiocarbon dating. The lack of influence from recent water within the bedrock groundwater system provides further evidence that it is isolated from the shallow groundwater and that the elevated sulfate observed in 35D is due to natural variations in sulfur-bearing minerals in the bedrock.

CONCLUSION

Naturally occurring lithium, chloride, and sulfate associated with minerals in the BCU and the coal seam in the vicinity of the NEAP at the Site were identified as alternative sources of these constituents to Site groundwater. Solid-phase samples collected near compliance wells 35D and 70D contained lithium, and SEP analyses demonstrated that much of the lithium in the solid phase is associated with the fractions which correlate to primary minerals such as micas and clay minerals, as well as the fractions associated with sulfides and oxide minerals. XRD identified abundant micas and clay minerals hosted in the shale bedrock that are the source of lithium in Site groundwater. Elevated chloride concentrations in groundwater are observed in the region that originate from Pennsylvanian-aged shale bedrock and brine migration over time. Elevated sulfate concentrations at 35D are associated with the oxidative dissolution of iron sulfide minerals present in coal seams within the bedrock and transported through upward hydraulic gradients within the BCU. Advanced statistical methods demonstrate that groundwater geochemical signatures from the BCU, the UCU, and the UU are distinctly different from that of the porewater based on a combination of parameters.

The alternative source of lithium and chloride observed in wells 35D and 70D is the shale bedrock. The alternative source of sulfate observed in well 35D is the coal seams within the BCU. These elevated chloride and sulfate concentrations are the dominant contributors of elevated TDS values at 70D and 35D, respectively (VER NEAP E001 ASD). This information serves as the written ASD demonstrating that the GWPS exceedances for lithium, chloride, and TDS at well 70D and for lithium, chloride, sulfate, and TDS at 35D were not due to the NEAP CCR unit.

REFERENCES

- Kelron. 2003. Regional and Local Hydrogeology and Geochemistry, Vermilion Power Plant, Illinois. Dynegy Midwest Generation, LLC, November.
- Lloyd, O. B., and W. L. Lyke. 1995. *Ground Water Atlas of the United States Illinois, Indiana, Kentucky, Ohio, Tennessee*. HA-730K. United States Geological Survey.
- Mehnert, E. and Dreher, G. B. 2002. *The Geochemistry of Groundwater from the Shallow Bedrock in Central Vermilion County, Illinois*. Illinois State Geological Survey. Open-File Series Report 2002-4.
- Ohtubo. 1989. "Interaction of Iron Oxides with Clays." Clay Science, 7: 227-242.
- Ramboll. 2021. *Hydrogeologic Site Characterization Report Vermilion Power Plant New East Ash Pond.* Ramboll Americas Engineering Solutions, Inc. October.

- Ramboll. 2022. Evaluation of Potential Groundwater Protection Standard Exceedances New East Ash Pond. Vermilion Power Plant, Oakwood, Illinois. Ramboll Americas Engineering Solutions, Inc. January.
- Ronov, A. B., Migdisov, A. A., Voskresenskaya, N. T., and Korzina, G. A. 1970. "Geochemistry of Lithium in the Sedimentary Cycle." *Geochemistry International* 7: 75-102.
- Schultz, L. G. 1969. "Lithium and Potassium Adsorption, Dehydroxylation Temperature, and Structural Water Content of Aluminous Smectites." *Clays and Clay Minerals* 17(3): 115-150.
- Starkey, H.C., 1982. The Role of Clays in Fixing Lithium (No. 1278). US Government Printing Office.
- Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. "Sequential extraction procedure for the speciation of particulate trace metals." *Analytical Chemistry* 5(7): 844–851.
- USGS. 2002. Characterization of the Quality of Coals from the Illinois Basin. Resource Assessment of the Springfield, Herron, Danville, and Baker Coals in the Illinois Basin. Professional Paper 1625-D. United Stats Geological Survey. March.
- Zawidzki, P. 1976. "Lithium Distribution in Micas and its Bearing on the Lithium Geochemistry of Granitoids." *Arch. Mineral* 32: 95-152

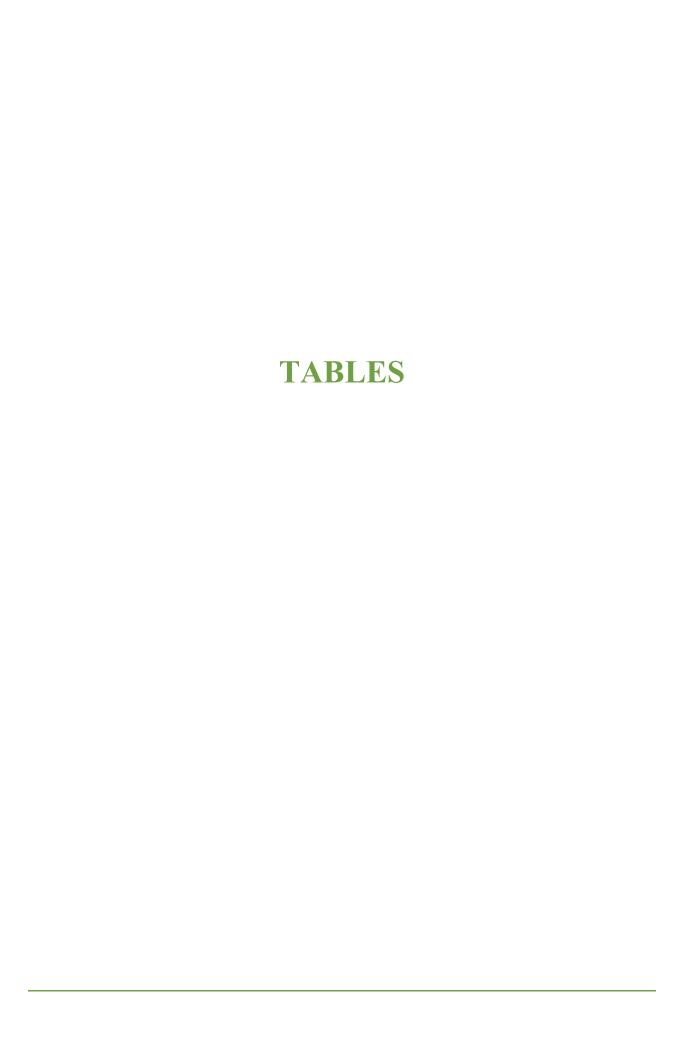


Table 1 - Lithium SEP Results Summary Vermilion Power Plant - New East Ash Pond

Soil Boring	VER-35		VER-35		VER-70		
Sample Dept	(55-60)		(60-63)		(75-80)		
Locati	Downgradient		Downgradient		Downgradient		
Field Boring Log	Weathered Shale		Highly Weathered Shale		Highly Weathered Shale		
Total Lit	42		39		42		
		SEP Res	sults				
SEP Fraction	SEP Reagent	Concentration	% of Total	Concentration	% of Total	Concentration	% of Total
Exchangeable Metals Fraction	${ m MgSO_4}$	<10		<10	-	<11	
Metals Bound to Carbonates Fraction	Sodium acetate, acetic acid	0.56 J	1%	0.62 J	1%	<8.3	
Non-crystalline Materials Fraction	Ammonium oxalate (pH 3)	0.52 J	1%	0.74 J	2%	0.41 J	1%
Metals Bound to Metal Hydroxide Fraction	Hydroxylamine HCl and acetic acid	13	28%	12	27%	12	24%
Bound to Organic Material Fraction	5% sodium hypochlorite (pH 9.5)	4.1 J	9%	3.9 J	9%	4.4 J	9%
Metals Bound to Acid/Sulfide Fraction	HNO ₃ , HCl, and H ₂ O	13	28%	14	31%	15	30%
Residual Metals Fraction	HF, HNO ₃ , HCL, and H ₃ BO ₃	15	33%	14	31%	19	37%
SEP To	46.2	100%	45.3	100%	50.8	100%	

Notes:

SEP - sequential extraction procedure

ft bgs - feet below ground surface

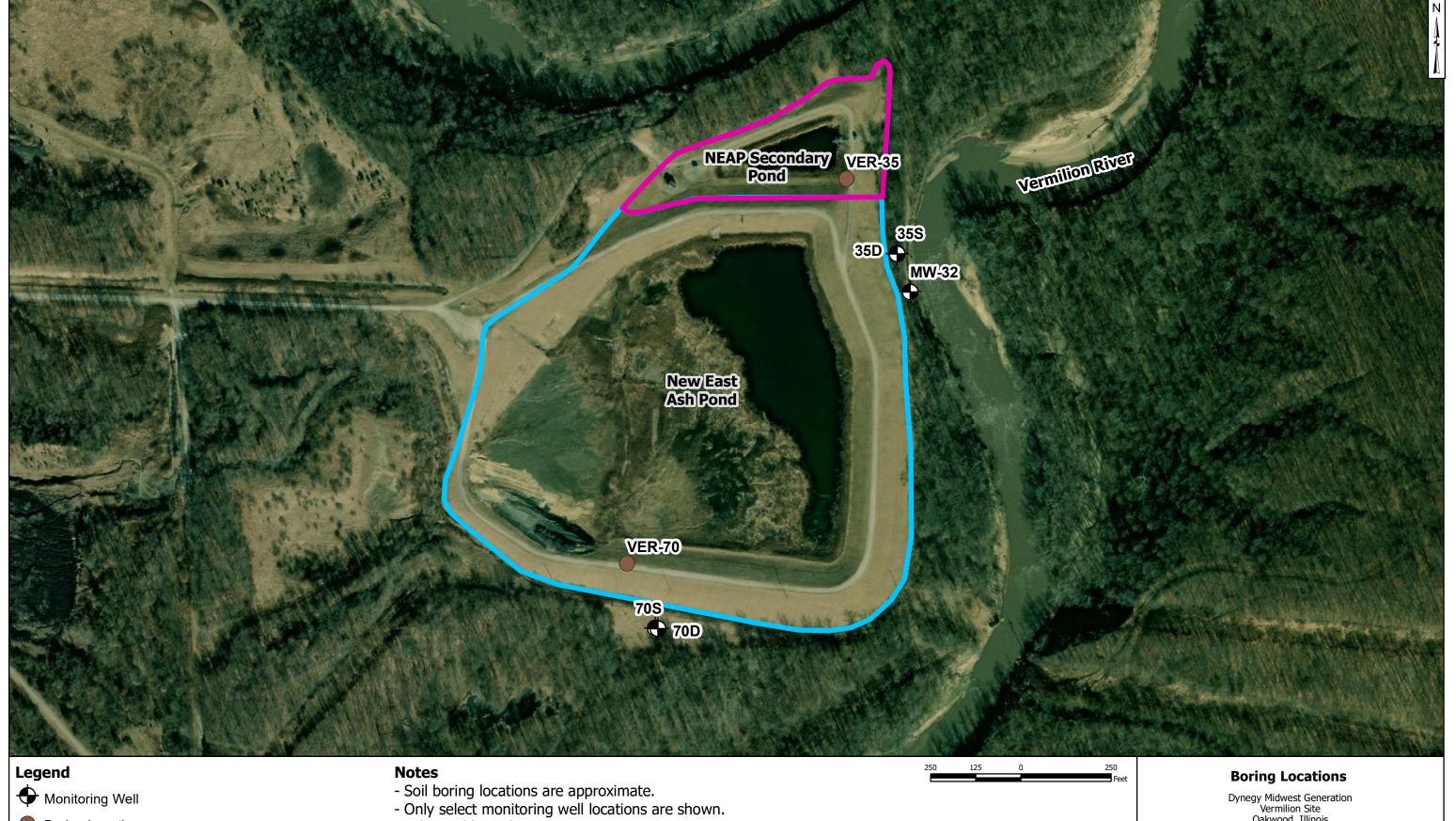
All results shown in microgram of lithium per gram of soil ($\mu g/g$).

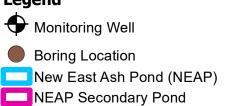
Total lithium was analyzed using aqua regia digest, ICP-MS

Non-detect values are shown as less than the reporting limit.

The lithium fraction associated with each SEP phase is shown.

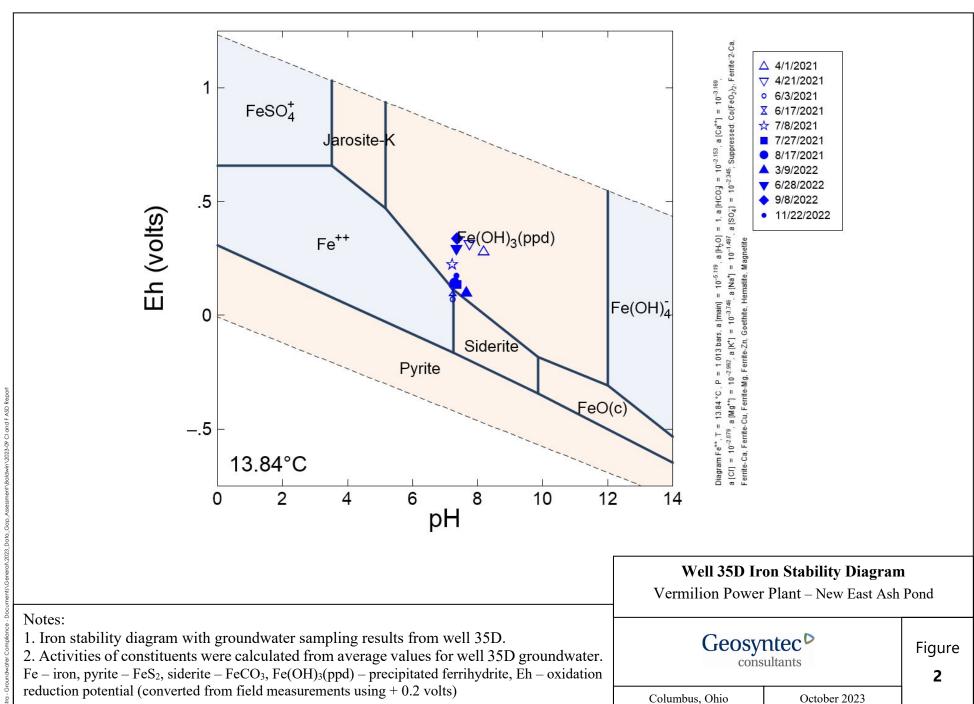
% of total lithium is calculated from the sum of the SEP fractions.

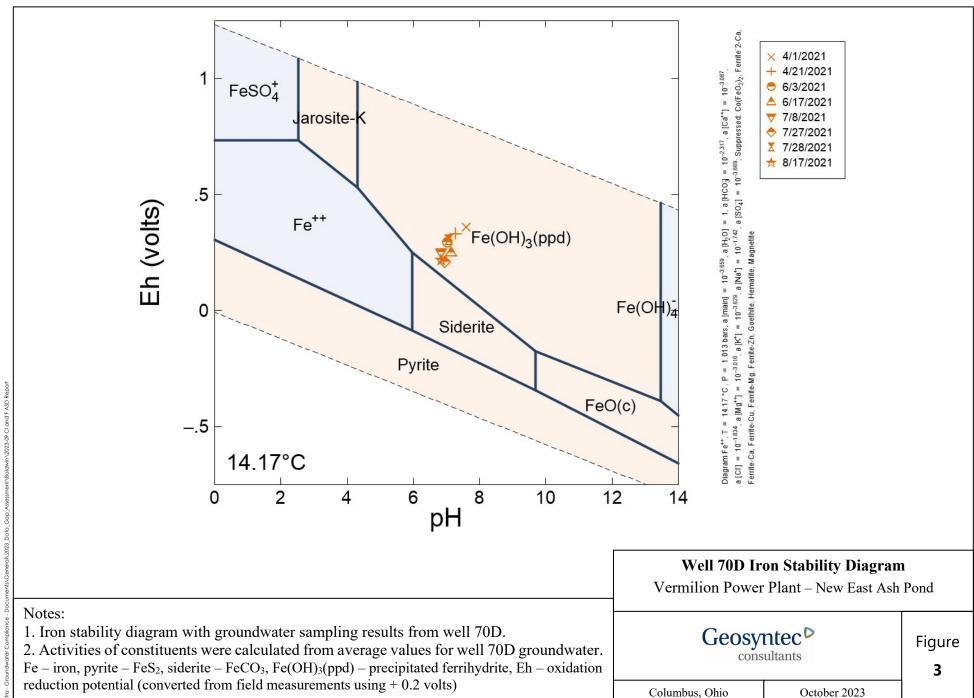

Table 2 - Summary of X-Ray Diffraction Analysis Vermillion Power Plant - New East Ash Pond

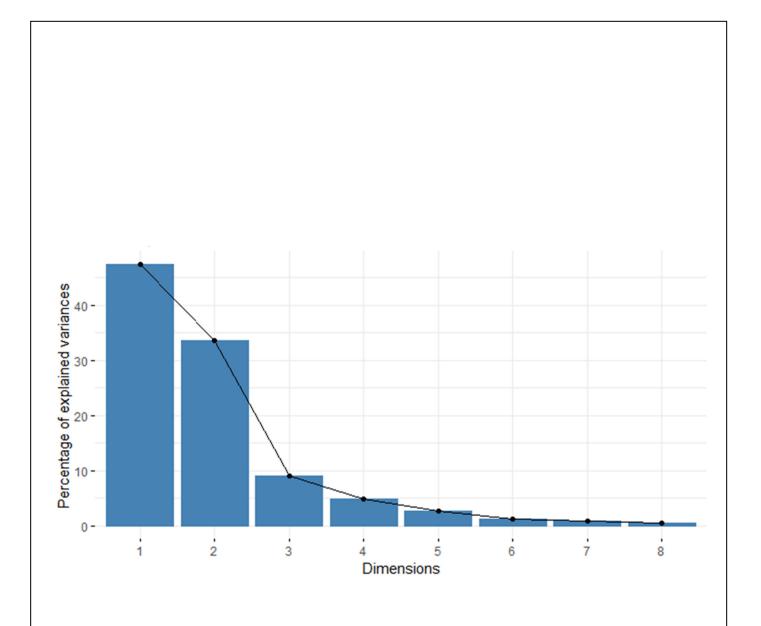

	Field Boring Location		VER-35	VER-35	VER-70
	Sample Depth (ft bgs)		(55-60)	(60-63)	(75-80)
	Location		Downgradient	Downgradient	Downgradient
	Field Boring Log Description	Weathered Shale	Highly Weathered Shale	Highly Weathered Shale	
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)
Quartz	SiO_2	Silicate	38.5	38.1	35.0
Muscovite	$KAl_2(AlSi_3O_{10})(OH)_2$	Mica	23.4	23.0	27.0
Albite	NaAlSi ₃ O ₈	Feldspar	12.6	12.6	11.5
Illite	$K(Al,Mg,Fe)_2(Si,Al)_4O_{10}(OH)_2$	Clay	7.1	8.0	5.2
Chlorite	$(Fe,(Mg,Mn)_5,Al)(Si_3Al)O_{10}(OH)_8$	Clay	6.9	6.8	7.7
Kaolinite	$Al_2Si_2O_5(OH)_4$	Clay	5.6	5.4	7.5
Siderite	FeCO ₃	Carbonate	4.9	5.0	5.4
Microcline	KAlSi ₃ O ₈	Feldspar	1.0	1.1	0.70
	Clay Minerals Total		19.6	20.2	20.4
	Clays + Muscovite Total		43.0	43.2	47.4

Notes

Sample depth is shown in feet below ground surface (ft bgs). wt %: percentage by weight






- Ash pond boundaries are approximate.

Dynegy Midwest Generation Vermilion Site Oakwood, Illinois

Geosyntec D Figure consultants Columbus, Ohio October 2023

Notes:

1. Samples collected from upgradient wells 10 and 22, downgradient wells 70S, 71S, 16, 35D, 70D, and 71D, and porewater well NED1 were included in the evaluation.

PCA Analysis - Quality of Representation of Principal Components

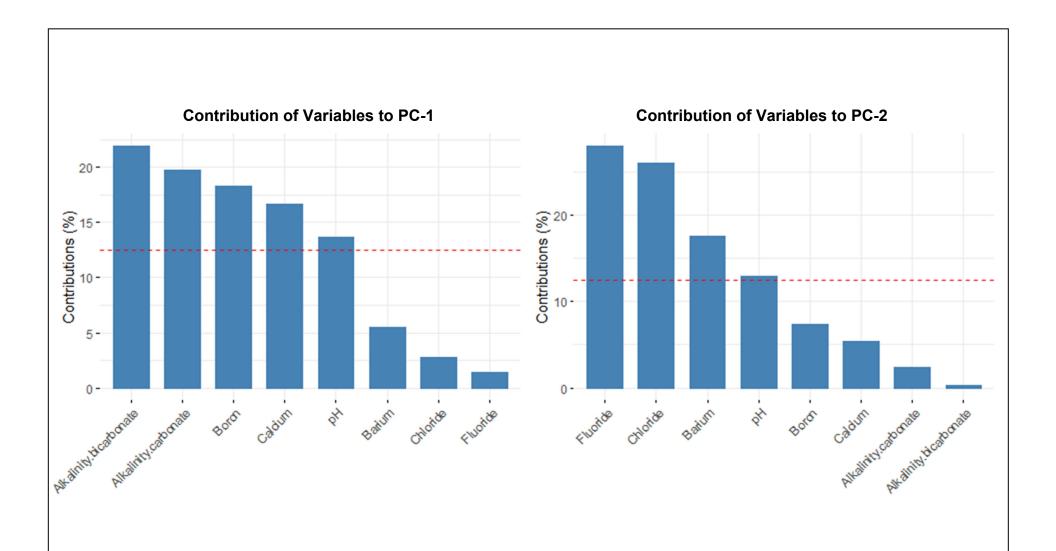

Vermilion Power Plant – New East Ash Pond

Figure **4a**

Columbus, Ohio

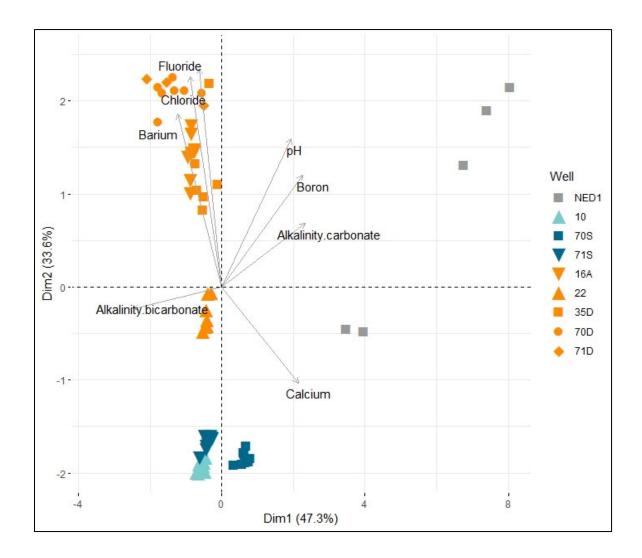
October 2023

Notes:

1. The dashed red line represents the anticipated value for uniform contribution. The constituents with a contribution exceeding the reference line are considered significant in its contribution to each PC (principal component).

Contribution of Variables to First Two Principal Components

Vermilion Power Plant – New East Ash Pond



Figure

4b

Columbus, Ohio

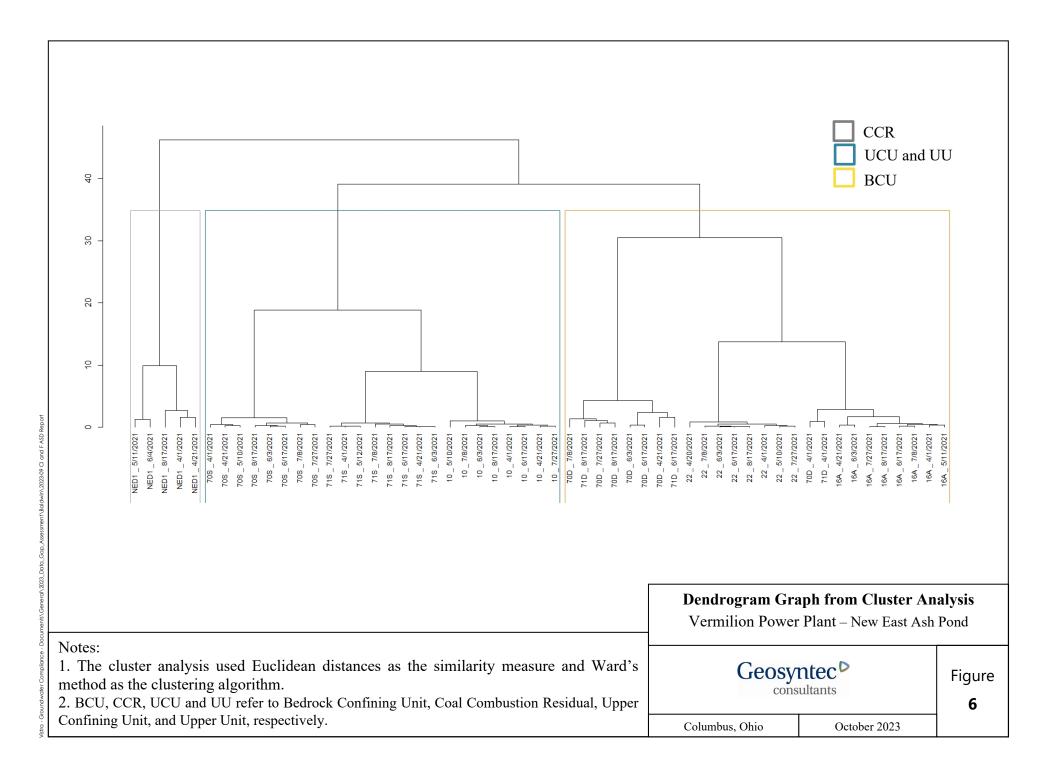
October 2023

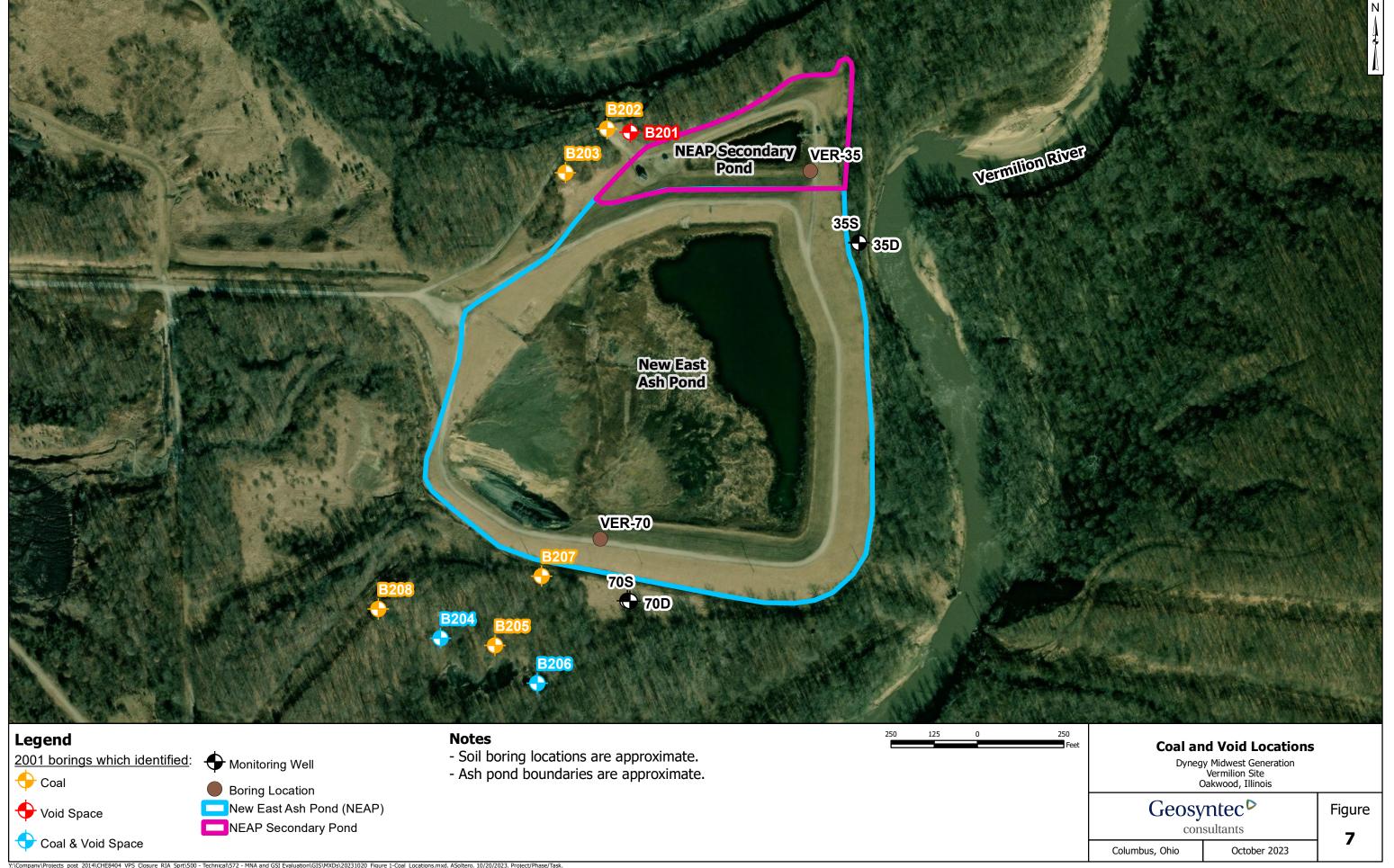
Votes:

- 1. The arrows signify the correlations between the constituents and the principal components.
- 2. Datapoints are colored based on hydrostratigraphic unit of sampling locations as follows:
 - -Bedrock Confining Unit (BCU) wells: 16A, 22, 35D, 70D, 71D,
 - -Upper Confining Unit (UCU) well: 10
 - -Upper Unit (UU) wells: 70S, 71S
 - -Coal Combustion Residual (CCR) well: NED

Principal Component Analysis Biplot

Vermilion Power Plant – New East Ash Pond

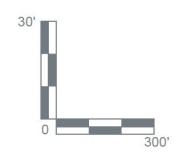

October 2023


Geosyntec [▶]
consultants

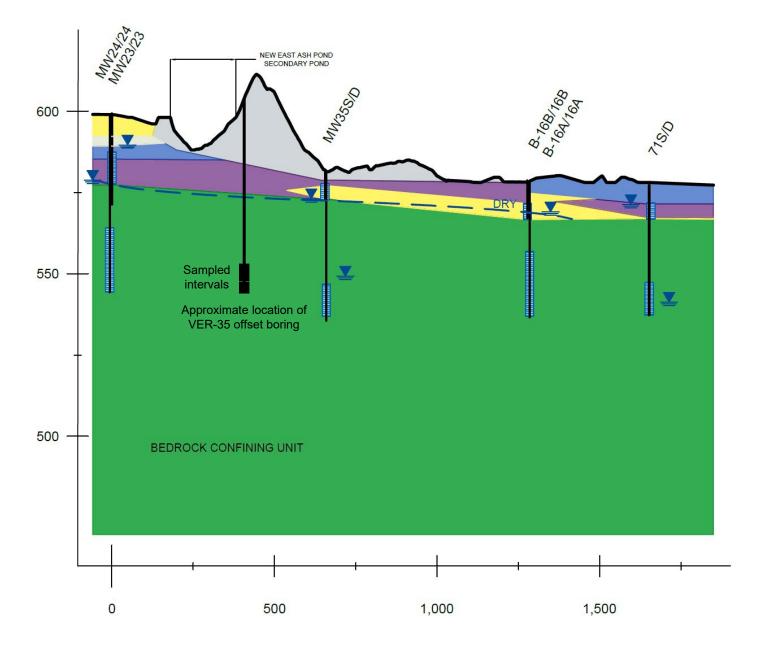
Figure

5

Columbus, Ohio



ATTACHMENT 1 Cross Sections


NOTES

- 1. This profile was developed by interpolation between widely spaced boreholes. Only at the borehole location should it be considered as an approximately accurate representation and then only to the degree implied by the notes on the borehole logs.
- 2. Scale is approximate.
- Vertical scale is exaggerated 10X.
- Groundwater elevations measured on March 29, 2021.
- 5. PMP = Potential Migration Pathway

LEGEND

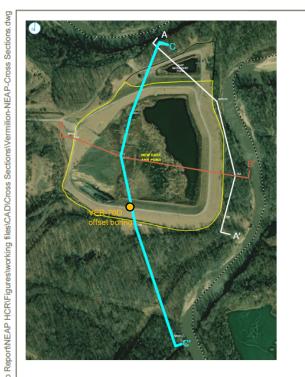
FILL CLAY (CL/CH) TILL (CL/CH) SILT (ML) SAND (SP/SM/SW) GRAVEL (GP/GW)

WELL SCREEN INTERVAL

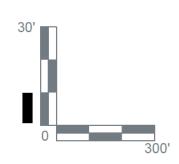
BEDROCK / WEATHERED BEDROCK (INTERBEDDED SHALE, LIMESTONE, SANDSTONE, V. LITTLE SS)

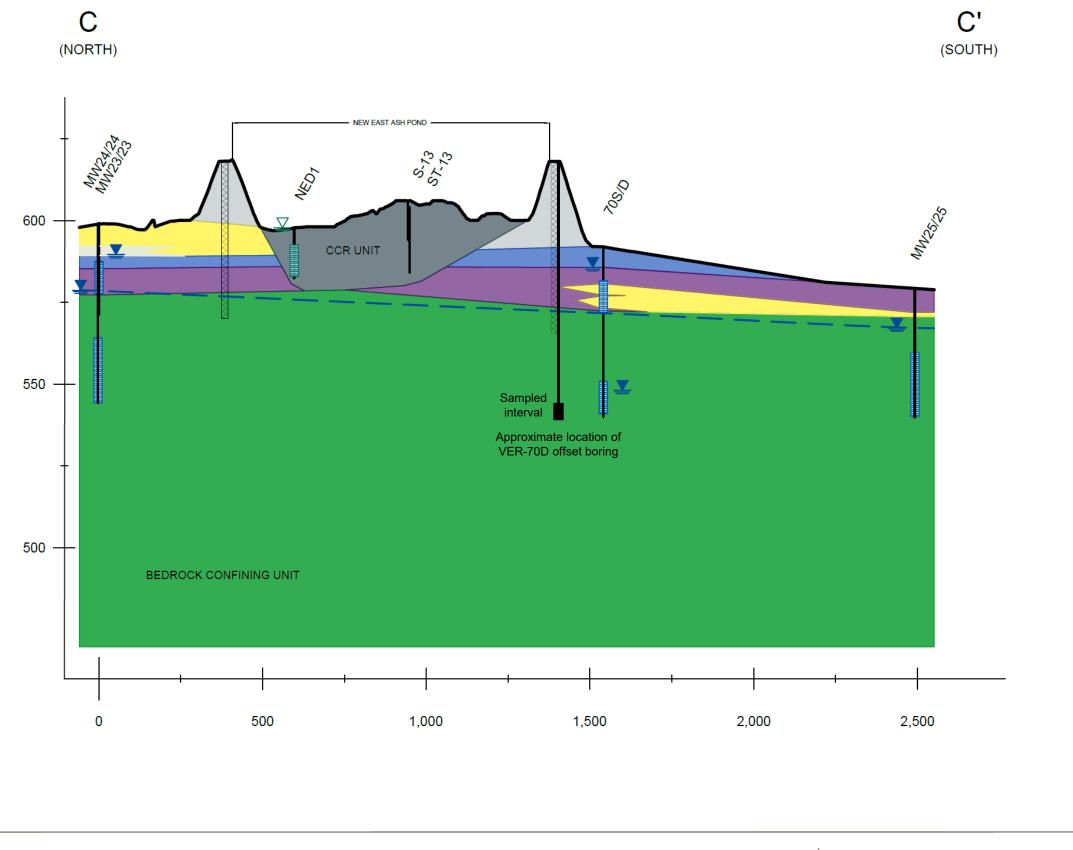
--- BEDROCK CONFINING UNT POTENTIOMETRIC SURFACE ■ BEDROCK CONFINING UNIT / PMP GROUNDWATER / OTHER

GROUNDWATER / SURFACE WATER ELEVATION(S)


GEOLOGIC CROSS SECTION

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.


FIGURE 2-9


HYDROGEOLOGIC SITE CHARACTERIZATION REPORT **NEW EAST ASH POND** VERMILION POWER PLANT OAKWOOD, ILLINOIS



NOTE

- This profile was developed by interpolation between widely spaced boreholes. Only at the borehole location should it be considered as an approximately accurate representation and then only to the degree implied by the notes on the borehole logs.
- 2. Scale is approximate.
- 3. Vertical scale is exaggerated 10X.
- 4. Groundwater elevations measured on March 29, 2021.
- 5. PMP = Potential Migration Pathway

BEDROCK / WEATHERED BEDROCK (INTERBEDDED SHALE, LIMESTONE, SANDSTONE, V. LITTLE SS)

WELL SCREEN INTERVAL

BEDROCK CONFINING UNT POTENTIOMETRIC SURFACE

POREWATER ELEVATION

■ BEDROCK CONFINING UNIT / PMP GROUNDWATER / OTHER GROUNDWATER / SURFACE WATER ELEVATION(S)

GEOLOGIC CROSS SECTION

NEW EAST ASH POND

VERMILION POWER PLANT

OAKWOOD, ILLINOIS

HYDROGEOLOGIC SITE CHARACTERIZATION REPORT

FIGURE 2-11

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ATTACHMENT 2

Boring Logs - VER-35 and VER-70 Soil Boring and Well Construction Logs - 35D and 70D

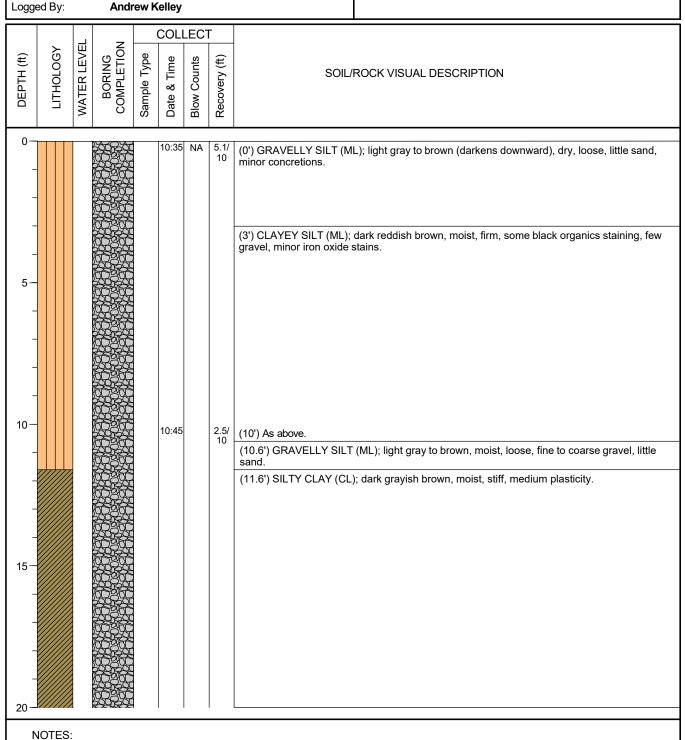
Client: Vistra

Vermilion Power Plant New East Ash Pond Project: Address: 10188 East 2150 North Road, Oakwood, IL

BORING LOG Boring No. VER-35 Page: 1 of 4

Drilling Start Date: 06/24/2023 Boring Depth (ft): Drilling End Date: 06/24/2023 Boring Diameter (in):

Drilling Company: **Cascade Drilling**


Drilling Method: Sonic

Drilling Equipment: Geoprobe Driller: Jeff Jehn

63 6

Ground Surface Elev. (ft): Not surveyed Boring was advanced adjacent to well 35D.

Samples collected from 55-60 ft bgs and 60-63 ft bgs

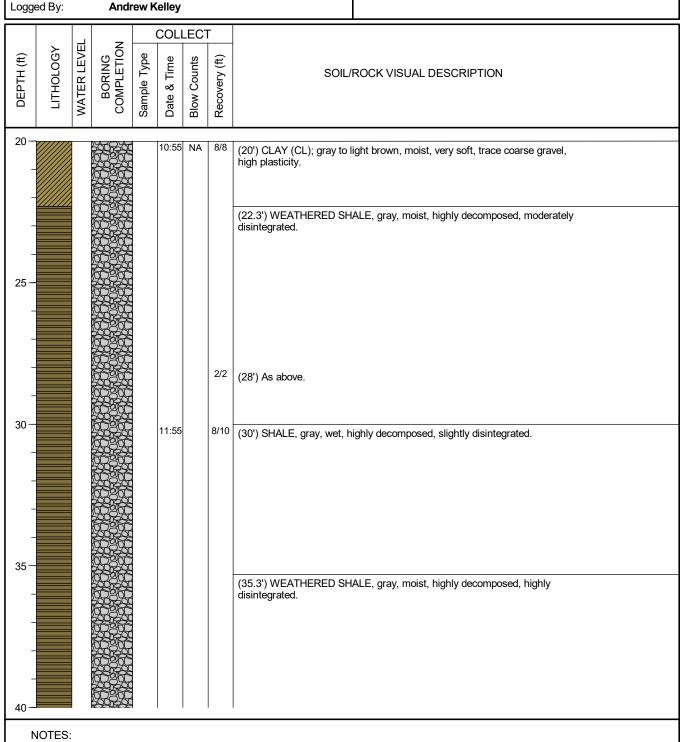
Client: Vistra

Vermilion Power Plant New East Ash Pond Project: Address: 10188 East 2150 North Road, Oakwood, IL

BORING LOG Boring No. VER-35 Page: 2 of 4

Drilling Start Date: 06/24/2023 Drilling End Date: 06/24/2023

Drilling Company: **Cascade Drilling**


Drilling Method: Sonic

Drilling Equipment: Geoprobe Driller: Jeff Jehn

Boring Depth (ft): 63 Boring Diameter (in):

Ground Surface Elev. (ft): Not surveyed Boring was advanced adjacent to well 35D.

Samples collected from 55-60 ft bgs and 60-63 ft bgs

engineers | scientists | innovators

Client: Vistra

Project: Vermilion Power Plant New East Ash Pond Address: 10188 East 2150 North Road, Oakwood, IL BORING LOG
Boring No. VER-35
Page: 3 of 4

Drilling Start Date: 06/24/2023
Drilling End Date: 06/24/2023

Drilling Company: Cascade Drilling

Drilling Method: Sonic

NOTES:

Drilling Equipment: Geoprobe

Driller: Jeff Jehn

Logged By: Andrew Kelley

Boring Depth (ft): 63
Boring Diameter (in): 6

Ground Surface Elev. (ft): **Not surveyed**Boring was advanced adjacent to well 35D.

Samples collected from 55-60 ft bgs and 60-63 ft bgs

Logged by.		Aliui					
		-		COL	LEC	Γ	
DEPTH (ft) LITHOLOGY	WATER LEVEL	BORING	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION
40	Q.			12:10	NA	2/2	(40') As above.
-				13:20		4/5	(42') WEATHERED SHALE, gray, moist, highly decomposed, highly disintegrated.
45				13:40		3.3/4	(47') As above.
50 -				14:05		3/4	(51') As above: slightly decomposed, competent at 1.5-1.6 ft.
55 —				14:20		4/5	(55') As above: slightly less weathered.
60							

Client: Vistra

Vermilion Power Plant New East Ash Pond Project:

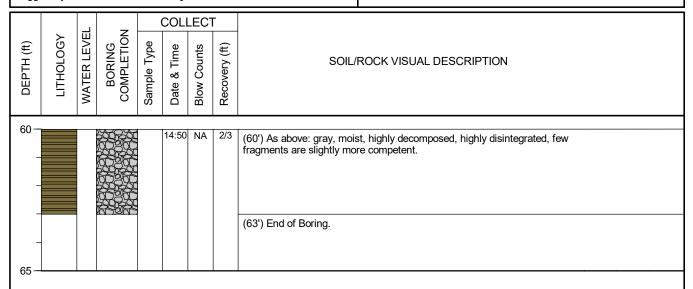
Address: 10188 East 2150 North Road, Oakwood, IL

BORING LOG

Boring No. VER-35 Page: 4 of 4

Drilling Start Date: 06/24/2023 Drilling End Date: 06/24/2023 Boring Diameter (in):

Drilling Company: **Cascade Drilling**


Drilling Method: Sonic Drilling Equipment: Geoprobe

Driller: Jeff Jehn

Logged By: **Andrew Kelley** Boring Depth (ft): 63

Ground Surface Elev. (ft): Not surveyed Boring was advanced adjacent to well 35D.

Samples collected from 55-60 ft bgs and 60-63 ft bgs

NOTES:

SOIL BORING LOG INFORMATION

Facility/Project Name	License	/Permit/	Monito	ring N	Jumbo	er	Borin	g Numl	ge I per	OI	3	
Vermilion Power Station									/35D			
Boring Drilled By: Name of crew chief (first, last) and Firm Bruno Williamson	Date Di	rilling St	arted		I	Date Dril	ling Co	mplete	d	Dril	ling Me	thod
Ramsey Geotechnical Engineering		3/1/	2017				3/3/2	2017		rotary/auger		
Common Well Name	Final St	Final Static Water Level Surface Elev								Borehole Diameter		
MW35D	F	eet (NA	AVD8	8)	5	81.25 I			-	7	.3 inc	hes
Local Grid Origin ☐ (estimated: ☐) or Boring Location ☐ State Plane 1,279,955.58 N, 1,151,276.17 E	L	t40°10'47.14212" Local Grid Location										
1/4 of 1/4 of Section , T N, R	Loi	ng <u>87</u>	<u>'° 44</u>	8.0	6652	<u>"</u>	F		□N □S		Feet	□ E □ W
Facility ID County	State				City/ c	or Village	е					
Sample Vermilion	IL		Danv	ille			Soi	1 Pror	erties			
								1110			1	
And Geologic Origin For						Sive			1.			ts
Each Major Unit		CS	hic	To T		pres	sture	<u> </u>	icity			men
Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit		S O	Graphic Log	Well	7 m	Compressive Street	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/	Comments
1 24 2			1		8							
cohesive, low plasticity, moist.	π5,		\ \ \ \									
$\mathbb{N} = \mathbb{F}^1$		(FILL) ML	\ \ \ \									
			\ \ \ \ \									
2 SS 19 3 25 - 43' SANDY I FAN CLAY: s(CL) wea			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
2.5 - 4.3' SANDY LEAN CLAY : s(CL), wea (2.5YR 4/2), 5-15% fine sand, sand content												
increasing with depth, low plasticity, moist.		s(CL)										
		S(CL)										
3 SS 24 2 4 3 4 4 4.3 - 8' POORLY-GRADED SAND : SP, yellow	llowish											
brown (10YR 5/6), fine sand, 15-30% clay, r												
5.1' trace clay.												
4 - 4 - 5 - 6												
4 SS 18 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		SP									Auger bringii	ng up
											cobble	
7 El traca graval and anhibita												
7.5' trace gravel and cobbles. 5 24 3 8 - 8.5' FAT CLAY: CH, very dark grayish b												
SS 10 4 (10YR 3/2), trace silt, high plasticity, moist.		СН	717.			0.5						
8.5 - 10' Weathered SHALE Bedrock BDX very dark grayish brown (10YR 3/2) to very		DDV										
greenish gray (GLEY 1 3/10Y), highly weath red (7.5YR 4/6) discoloration, fissile, moist.		BDX (SH)										
6 15 20 10 10 - 15.6' Weathered SHALE Bedrock to S	SHALE:											
SS 15 BDX (SH), gray (GLEY 1 6/N), weak, fissile, intensely fractured, red (7.5YR 4/6) discolor	,											
dry.	auon,	BDX (SH)										
		(011)										
_ _ 12												
I hereby certify that the information on this form is true and correct to the be		`										
	ıral Res V. Florida					о ул 52	204		l: (414) c: (414)			
234 V	v. FIOFIGA	ı Sı., FIII	11 F100F			E, WI 53 ILLINOI						17.GPJ

Boring Number MW35D Page 2 of 3

	1			Boring Number 1V1 VV 33D			1	1		0 1	Pag		OI	
San	r -									Soil	Prope	erties		
	(in)	ts	et	Soil/Rock Description					f)					
. e	Att.	uno	n Fe	And Geologic Origin For					ssiv 1 (ts	.		8.		nts
nber Typ	gth over	w C	th L	Each Major Unit	CS	phic	1 2ran		ngth	stur	ig it	ticit	0)/ nme
Nun	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		S D	Graphic Log	Well Diagram	Ί	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
% \(\text{Number} \) and Type	8	45 50 for 2"		10 - 15.6' Weathered SHALE Bedrock to SHALE:										
ss [/	9		E	BDX (SH), gray (GLEY 1 6/N), weak, fissile, intensely fractured, red (7.5YR 4/6) discoloration,										
			-13	dry. (continued)										
			-											
o [/	0	31	- 14		BDX (SH)									
8 SS X	9	50 for 3"	E		` ′									
<u>/ \</u>			- 15											
			- 13											
9 CORE	120		16	15.6 - 45.8' SHALE : BDX (SH), dark reddish gray										Core 9,
CORIL	120		<u></u> 16	(10YR 4/1) to gray (2.5Y 5/1), microcrystalline, thinly bedded to laminated, weak, slightly										RQD = 89%. Light
				decomposed (very dark gray (10YR 3/1) to black										brown gray
			 17	(10YR 2/1) discoloration in partly healed fractures), competent, dry to moist in fractures.										return water.
			-											4" diameter outer casing
			-18											set from
			_											0-16 ft bgs.
			- 19											
			-											
			- 20											
			-											
			 21											
			_											
			_22											
			-											
			_23											
			_											
			-24		BDX (SH)									
					, ,									
			_ —25											
			- 2											
10 CORE	131.3		26	25.6' partly to totally healed fractures.										Core 10,
CORE	120		-26 -											RQD = 89%. Light
[]			<u> </u>											gray return water.
			 27											water.
			_											
			_28											
			_											
]			- 29											
[]														
]			 											
[]			_ 31											
			- 31											
1 1			-32					7						

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW35D Page 3 of 3

	, 1			Boring Number 1V1 VV 33D					C ::	Paş		01	<u> </u>
_Sai	nple								Soil	Prope	erties		
	(ii) &	ts.	Ę	Soil/Rock Description				re f)					
. e	Att.	lunc	л Fе	And Geologic Origin For			_	ssiv ı (ts	o l		>		nts
lber Typ	gth.	Č	th I	Each Major Unit	l U	. shic	1 gran	ıpre ngtk	stur	pi i	ticit	9)/ ime
Nun and	Leng Rec	Blov	Dep		Sn	Graj Log	Wel Diag	Con Stre	Moi	Liq. Tim	Plas	P 20	RQI
Number 11 CORE		Blow Counts	-33343536373839404141	And Geologic Origin For	U S C S	Graphic	Well Diagram Diagram	Compressive Strength (1sf)	Moisture Content	Liquid	Plasticity Index	P 200	Core 11, RQD = 93%. Gray return water.
			-42 -43 -44 -45	41.9' - 43' crossbedding. 45.8' End of Boring.									

Facility/Project Name	Local Grid Loca	ntion of Well		□ E.	Well Name	
Vermilion Power Station		ft. □ N. ft. □ S in □ (estimate	ft.	□ E. □ W.		
Facility License, Permit or Monitoring No.					MUZZD	
E. We. ID	†		e e	44' 8.067" or	MW35D	
Facility ID		9,955.58 ft. N,		_ ft. E. E /W	Date Well Installed	
Type of Well	Section Location	n of Waste/Source	2	□Е	03/03/2017 Well Installed By: (Person's Name a	nd Firm)
	1/4 of	1/4 of Sec.	, T	. N, R \Backsquare W	• •	na i min)
Distance from Waste/ State	Location of We u Dpgrad	ll Relative to Was	te/Source Sidegradient	Gov. Lot Number	Bruno Williamson	
Source ft. IL		radient n			Ramsey Geotechnical Enginee	ring
A. Protective pipe, top elevation	ft. MSL			. Cap and lock?		□ No
B. Well casing, top elevation58	34.15 ft. MSL		2	Protective cover pi a. Inside diameter:		6.0 in.
	31.25 ft. MSL			b. Length:	_	6.0 ft.
			THE PROPERTY OF	c. Material:	Steel	
D. Surface seal, bottom 579.3 ft. MSL	or <u>2.0</u> ft.	525252	16.27.27		Other	
12. USCS classification of soil near screen:			- AICOICOIL	d. Additional prote	ection?	s □ No
	W□ SP□ L□ CH□			If yes, describe:	4" diameter protective PVC casing	
Bedrock ⊠	L L CH L		3	3. Surface seal:	Bentonite Concrete	
13. Sieve analysis attached? ☐ Ye	es 🛮 No				Other	_
14. Drilling method used: Rotar	v П		\ <u>\</u>	I. Material between v	well casing and protective pipe:	
Hollow Stem Auge	•				Rentonite	\boxtimes
HSA / Rotary Other	er 🛛				Sand Other	\boxtimes
			5	5. Annular space seal	: a. Granular/Chipped Bentonite	
	ir 🗆				ud weight Bentonite-sand slurry	
Drilling Mud □ 0 3 Non	ne 🗆			cLbs/gal m		
16. Drilling additives used? ☐ Ye	es 🛮 No				Bentonite-cement grout	\boxtimes
			l⊗4	f. How installed:	volume added for any of the above	⋈
Describe				i. How installed:	Tremie Tremie pumped	
17. Source of water (attach analysis, if required):				Gravity	
City of Champaign			\otimes	6. Bentonite seal:	a. Bentonite granules	
			 	b. □ 1/4 in. ⊠ 3	$3/8$ in. \square 1/2 in. Bentonite chips	
E. Bentonite seal, top551.3 ft. MSL	or30.0	ft.			Other	
				7. Fine sand material	: Manufacturer, product name & mes	h size
F. Fine sand, top ft. MSL	or	ft.		a	a 3	
548.3 C MGI	33.0	/ 164		b. Volume added	ft ³	ole olero
G. Filter pack, top 548.3 ft. MSL	or	rt.	8	_	l: Manufacturer, product name & meNSF Quartz Sand #10-20	sn size
H. Screen joint, top 546.3 ft. MSL	or 35.0	ft.		b. Volume added		_
			= / 9	9. Well casing:	Flush threaded PVC schedule 40	\boxtimes
I. Well bottom 536.3 ft. MSL	or45.0	ft. <	크 1	2	Flush threaded PVC schedule 80	
					Other	
J. Filter pack, bottom 535.5 ft. MSL	or <u>45.8</u>	ft.	10). Screen material: .		-
535.5	15.9			a. Screen Type:	Factory cut	
K. Borehole, bottom 535.5 ft. MSL	or43.8	ft.			Continuous slot	
L. Borehole, diameter 7.3 in.				h Manufacturar	Other	
L. Borehole, diameter				c. Slot size:		0.100 in.
M. O.D. well casing 2.38 in.				d. Slotted length:	_	10.0 ft.
			11	. Backfill material (l	below filter pack): None	
N. I.D. well casing 1.99 in.					Other	
<u> </u>						
I hereby certify that the information on this form		•	-	1	Date Modified: 4/6/2017	
Signature Amolhold		raturar r	Resource Tech	nnology 5, Milwaukee, WI 5	Tel: (414) 837-3607 3204 Fax: (414) 837-3608	
1. 1. V. V. V.		234 W. F10	ina succi, Fioof	5, minwaukee, w15	J40 1 (11.) 557 5565	

Client: Vistra

Project: **Vermilion Power Plant New East Ash Pond** Address: 10188 East 2150 North Road, Oakwood, IL

BORING LOG Boring No. VER-70 Page: 1 of 4

Drilling Start Date: 06/23/2023 Boring Depth (ft): Boring Diameter (in): Drilling End Date: 06/23/2023

Drilling Company: **Cascade Drilling**

Drilling Method: Sonic

Drilling Equipment: Geoprobe

Driller: Jeff Jehn Logged By: **Andrew Kelley** 80 6

Ground Surface Elev. (ft): Not surveyed Boring was advanced adjacent to well 70D.

Samples collected from 30-40 ft bgs, 41-42 ft bgs and

75-80 ft bgs

Logg	gea By:		Anai	rew r	kelley			
			_		COL	LEC	Γ	
DEPTH (ft)	LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION
10-					10:40		4/10	(1') SILT (ML); brown to tan, dry, firm, moderate concretions, little gravel, few clay. (3.6') SILT (ML); gray to dark gray with little brown, dry, firm, few fine sand, few fine gravel, coarsens downwards, moderate concretions.
	NOTES	:						

engineers | scientists | innovators

Client: Vistra

Project: Vermilion Power Plant New East Ash Pond Address: 10188 East 2150 North Road, Oakwood, IL BORING LOG
Boring No. VER-70
Page: 2 of 4

Drilling Start Date: 06/23/2023
Drilling End Date: 06/23/2023

Drilling Company: Cascade Drilling

Drilling Method: Sonic

Drilling Equipment: **Geoprobe**

Driller: Jeff Jehn

Logged By: Andrew Kelley

Boring Depth (ft): 80
Boring Diameter (in): 6

Ground Surface Elev. (ft): **Not surveyed**Boring was advanced adjacent to well 70D.

Samples collected from 30-40 ft bgs, 41-42 ft bgs and

75-80 ft bgs

SOIL/ROCK VISUAL DESCRIPTION 20 20 21 30 30 310 320 NA 310 (20) CLAY WITH SILT (CL); grayish brown, wet, stiff, little sand, little fine to coarse gravel. (21) SILTY CLAY (CL); grayish brown, wet, soft, little fine gravel, few sand. (21.3) SANDY CLAY (CL); grayish brown, wet, very stiff, some gravel. 310 3310 3310 3310 3310 3310 3310 331	33					,			
3/10 3/10 3/10 (20') CLAY WITH SILT (CL); gray/sh brown, wet, stiff, little sand, little fine to coarse gravel. (21') SILTY CLAY (CL); gray/sh brown, wet, soft, little fine gravel, few sand. (21.3') SANDY CLAY (CL); gray/sh brown, wet, very stiff, some gravel. (30') GRAVELLY CLAY WITH SAND (CL); gray/sh brown, wet, firm, sand coarsens downward. (31.8') CLAY (CL); dark gray to black, wet, firm, little gravel, few roots observed, dark organics.				_		COL	LEC	Τ	
3/10 (20) CLAY WITH SILT (CL); grayish brown, wet, stiff, little sand, little fine to coarse gravel. (21) SILTY CLAY (CL); grayish brown, wet, sert, little fine gravel, few sand. (21.3') SANDY CLAY (CL); grayish brown, wet, very stiff, some gravel. (30') GRAVELLY CLAY WITH SAND (CL); grayish brown, wet, firm, sand coarsens downward. (31.8') CLAY (CL); dark gray to black, wet, firm, little gravel, few roots observed, dark organics.	DEPTH (ft)	LITHOLOGY	WATER LEVE	BORING	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION
	20 -	TI	WAT		Sample			3/10	(21') SILTY CLAY (CL); grayish brown, wet, soft, little fine gravel, few sand. (21.3') SANDY CLAY (CL); grayish brown, wet, very stiff, some gravel. (30') GRAVELLY CLAY WITH SAND (CL); grayish brown, wet, firm, sand coarsens downward. (31.8') CLAY (CL); dark gray to black, wet, firm, little gravel, few roots observed, dark
		NOTES							

06/23/2023

06/23/2023

Sonic

Cascade Drilling

engineers | scientists | innovators

Drilling Start Date:

Drilling End Date:

Drilling Company:

Drilling Method:

Client: Vistra

Project: Vermilion Power Plant New East Ash Pond

Address: 10188 East 2150 North Road, Oakwood, IL

BORING LOG
Boring No. VER-70
Page: 3 of 4

Boring Depth (ft): 80
Boring Diameter (in): 6

Ground Surface Elev. (ft): **Not surveyed**Boring was advanced adjacent to well 70D.

Samples collected from 30-40 ft bgs, 41-42 ft bgs and

75-80 ft bgs

Driller:	Jeff Jehn
Logged By:	Andrew Kelley

Drilling Equipment: Geoprobe

Logge	ea By:		Anar	ew r	Lelley			
			_		COL	LEC	Τ	
DEPTH (ft)	LITHOLOGY	WATER LEVEL	BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION
40 — 45 — 50 — 55 — 60 —	NOTES				14:30		5/10	(40') POORLY GRADED SAND (SP); brown with hint of gray, wet, medium dense, fine grained. (41.7') CLAY (CL); brownish gray, moist, very stiff, few coarse gravel, some sand. (42.4') SHALE, gray, moist, laminated, highly decomposed, moderately disintegrated. (50') As above.
1 '	NOTES							

engineers | scientists | innovators

Client: Vistra

Project: Vermilion Power Plant New East Ash Pond Address: 10188 East 2150 North Road, Oakwood, IL BORING LOG
Boring No. VER-70
Page: 4 of 4

Drilling Start Date: 06/23/2023

Drilling End Date: 06/23/2023

Drilling Company: Cascade Drilling

Drilling Method: Sonic

Drilling Equipment: **Geoprobe**

Driller: **Jeff Jehn**Logged By: **Andrew Kelley**

Boring Depth (ft): 80
Boring Diameter (in): 6

Ground Surface Elev. (ft): **Not surveyed**Boring was advanced adjacent to well 70D.

Samples collected from 30-40 ft bgs, 41-42 ft bgs and

75-80 ft bgs

Logged By:	Ana	rew r	Kelley			
			COL	LEC	Τ	
DEPTH (ft) LITHOLOGY	WATER LEVEL BORING COMPLETION	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIPTION
60		4	15:15	NIA	1/10	
65 -			15:15		1/10	(60') SHALE, gray to dark gray, wet (driller water), foliated, highly decomposed, slightly disintegrated, weaker and more highly disintegrated shale likely washed out by driller fluids.
75 -			17:00		10/10	(75') SHALE, gray to dark gray, wet, highly decomposed, moderately disintegrated, coated in wet clay (likely slough). (75') SHALE, gray to dark gray, moist, highly decomposed, slightly disintegrated.
80						(80') End of Boring.
NOTES	3:					
1						

Signature

Facility/Project Name Vermilion Power Station Boring Drilled By: Name of crew chief (first, last) and Firm Jason Greer License/Permit/Monitoring Number 70D Date Drilling Started Date Drilling Completed Date Drilling Completed	Orilling Method Mini Sonic	
Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed	_	
	_	
	Mini Sonic	
Cascade Drilling 3/4/2021 3/4/2021		
	rehole Diameter	
Todal Grid Origin ☐ (estimated: ☐) or Boring Location ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	6.0 inches	
State Plane 1,278,929.46 N, 1,150,617.15 E		
1/4 of 1/4 of Section , T N, R Long ' " Feet \[\sigma S	☐ E Feet ☐ W	
Facility ID County State Civil Town/City/ or Village		
Vermilion Illinois Oakwood		
Sample Soil Properties		
Sample Sample Soil/Rock Description And Geologic Origin For Counts Soil Depth In Feet Strength (ist) Well Diagram PID 10.6 eV Lamp Moisture Content Liquid Liquid Limit Soil Properties		
And Geologic Origin For S S S S S S S S S S S S S S S S S S S	suts	
Number and Type Length Att. & Recovered (in) Blow Counts Blow Counts Blow Counts Compressive Compressive Content Liquid L	RQD/ Comments	
1 60	CS= Core Sample	
I		
ML 1.5		
2 60 5 1.5 1.5		
6.3 - 11.3' SILTY CLAY: CL/ML, brown (10YR 4/3),		
L ₇ sand (0-10%), gravel (0-5%), firm, slow dilatancy,		
low toughness, medium plasticity, moist.		
9.4' color change to yellowish brown (10YR 5/4).		
11.3 - 14.7' CLAYEY SAND: SC, yellowish brown (10YR 5/6), rounded fine sand, silt (5-10%), gravel		
(0-5%), loose, wet.		
I hereby certify that the information on this form is true and correct to the best of my knowledge.		

Firm Ramboll

234 W. Florida Street, Milwaukee, WI 53204 Fax: (414) 837-3608

Template: RAMBOLL_IL_BORING LOG - Project: 845_VERMILION_2021 (2).GPJ

Tel: (414) 837-3607

				Boring Number 70D								e 2	of	3
Sar	nple						1	du		Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log Well	Diagram	PID 10.6 eV Lamp	Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
nN 4 S 5 S	120 97	Blo	-16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -34 -35 -36	14.7 - 15' SILTY CLAY: CL/ML, yellowish brown (10YR 5/6), soft, slow dilatancy, low toughness, medium plasticity. 15 - 16.2' CLAYEY SAND: SC, yellowish brown (10YR 5/6), rounded fine sand, silt (5-10%), gravel (0-5%), loose, wet. 16.2 - 18.8' POORLY-GRADED SAND WITH CLAY: SP-SC, ???, subrounded to rounded, fine to medium sand, loose, wet. 18.8 - 19.6' LEAN CLAY: CL, dark gray (10YR 4/1), gravel, (0-5%), sand (0-5%), stiff, no dilatancy, low toughness, medium plasticity, moist. 19.6 - 20.3' Weathered SHALE Bedrock BDX (SH), gray (10YR 5/1), dry. 20.3 - 52' SHALE: BDX (SH), gray (10YR 5/1).			Dia		10O 2.5	Mo Cor	Liq Lin	Pla Ind	P 2	RQ Coi
			37 38 39 -40											

	Boring Number 70D							Pag	ge 3	of .	3
Sample					dun		Soil	Prope	erties		
t. & (in) ants	Soil/Rock Description				PID 10.6 eV Lamp	ve sf)					
er /pe n Att ered Cour	And Geologic Origin For	N	ic	u,).6 e	ressi th (t	ıre	_	ity		ents
Number and Type Length Att. & Recovered (in) Blow Counts	Each Major Unit	SC	Graphic Log	Well Diagram	D 1(Compressive Strength (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	20.3 - 52' SHALE: BDX (SH), gray (10YR 5/1).	D	G J	M O		O 22	≥ 0	בב	P d	Ь	<u> </u>
	(continued)										
6 CS 132 -4											
42											
-43											
4:											
		BDX									
		(SH)									
4′	,										
-48											
-49											
50											
	52' End of Boring.										

Facility/Project Name	Local Grid Lo	cation of Well			Well Name	
Vermilion Power Station		ft. □ N	ft.	☐ E. ☐ W. Vell Location ☐		
Facility License, Permit or Monitoring No.	Local Grid Or	igin (estima	nted:) or V	Vell Location		
	Lat		Long	or	70D	
Facility ID	1		1,150,617		Date Well Installed	
	Section Locati	on of Waste/Source	ce		03/04/2021	
Type of Well	1/4 6	1/4 60	T.	N, R. E	Well Installed By: (Person's Name and	d Firm)
Well Code 12/pz	1/4 of .	ell Relative to Wa	, 1	Gov. Lot Number	Jason Greer	
Distance from Waste/ State	u Upgra		Sidegradient	Gov. Lot Number		
Source ft. Illinois		gradient n			Cascade Drilling	
		•		. Cap and lock?	⊠ Yes [□ No
		ll l		2. Protective cover pi	pe:	
B. Well casing, top elevation59	94.52 ft. MSL		HI	a. Inside diameter:	<u> </u>	4.0 in.
C. Land surface elevation	591.9 ft. MSL			b. Length:		5.0 ft.
D.C. C. 11.44 590.9 G.MGI	1.0	X.77X.77	18787	c. Material:	Steel	\boxtimes
D. Surface seal, bottom 590.9 ft. MSL	or I				Other [
12. USCS classification of soil near screen:		MIKO/KO/k	- AICOICOIC	d. Additional prote	ection?	□ No
	W SP ST ST ST ST ST ST ST			If yes, describe:	4 Steel Bollards	-
SM □ SC □ ML □ MH □ C Bedrock ⊠	L 🗆 CH 🗆		🕍 \ \ 2	3. Surface seal:	Bentonite [
	MA				Concrete	
13. Sieve analysis attached?					Other [
14. Drilling method used: Rotar	5		│	Material between v	well casing and protective pipe:	_
Hollow Stem Aug					Sand Bentonite Sand Other	
Sonic Other	er 🛛			-	Sand Other	\bowtie
15 D W. G.11 1 W. 5702			I KXXI	•	l: a. Granular/Chipped Bentonite	
15. Drilling fluid used: Water 🖾 0 2 A					ud weight Bentonite-sand slurry	
Drilling Mud □ 0 3 Nor	ie 🗆				ud weight Bentonite slurry	
16. Drilling additives used? ☐ Ye	es 🖾 No			d% Benton		
	2 2 1.0		I KXXI		volume added for any of the above	_
Describe				f. How installed:		
17. Source of water (attach analysis, if required	d):				Tremie pumped	
	,				Gravity [
Potable City Water		╛		6. Bentonite seal:	9	
557.0	24.0		7		$3/8$ in. $\square 1/2$ in. Bentonite chips	
E. Bentonite seal, top557.9 ft. MSL	or34.0	ft.	│ 👹 / ..		Other [
					: Manufacturer, product name & mesh	size
F. Fine sand, top ft. MSL	or	ft.		a		-
552.0 0 1/2	20.0	. \ \		b. Volume added		
G. Filter pack, top 552.9 ft. MSL	or39.0	ft.	/	3. Filter pack materia	al: Manufacturer, product name & mes	h size
550.0	41.0			a	FILTERSIL 0.85	_
H. Screen joint, top550.9 ft. MSL	or41.0	ft.		b. Volume added		_
540.9 0 160	51.0			9. Well casing:	Flush threaded PVC schedule 40	
I. Well bottom 540.9 ft. MSL	or	π.			Flush threaded PVC schedule 80	
540.9 0 167	51.0				Schedule 40 PVC	
J. Filter pack, bottom 540.9 ft. MSL	or	ft.	\ 10). Screen material:		_
X D 1 1 1 1 1 530 0 0 1 101	52.0	. ///		a. Screen Type:	Factory cut	
K. Borehole, bottom 539.9 ft. MSL	or	II.			Continuous slot	
I D 1 1 1				b. Manufacturer	Johnson Screens Other	
L. Borehole, diameter6.0 in.				c. Slot size:		.010 in.
238				d. Slotted length:		10.0 ft.
M. O.D. well casing 2.38 in.			11	Backfill material (
N. I.D. well casing 2.07 in.			11		nation Materials Other	
N. I.D. well casing <u>2.07</u> in.					Onlei	~ 3
I hereby certify that the information on this form	n is true and a	rect to the best -	f my knowlodgo		Date Modified: 3/31/2021	
Signature		r.			Tel: (414) 837-3607	
là All		Kambon	l orida Street, Milw	raukee WI 53204	Fax: (414) 837-3608	
We I Co		∠5+ W. FI	oriua succi, iviilw	aurce, W1 33204	(,	

ATTACHMENT 3 Sequential Extraction Procedure Laboratory Analytical Reports

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Allison Kreinberg Geosyntec Consultants Inc 941 Chatham Lane Suite 103 Columbus, Ohio 43221

Generated 8/3/2023 11:56:48 AM

JOB DESCRIPTION

Vermilion SEP

JOB NUMBER

140-32513-1

Eurofins Knoxville 5815 Middlebrook Pike Knoxville TN 37921

Eurofins Knoxville

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Generated 8/3/2023 11:56:48 AM

Authorized for release by Ryan Henry, Project Manager I <u>WilliamR.Henry@et.eurofinsus.com</u> (865)291-3006

1.

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Sample Summary	7
Client Sample Results	8
Default Detection Limits	11
QC Sample Results	13
QC Association Summary	19
Lab Chronicle	24
Certification Summary	33
Method Summary	34
Chain of Custody	35

Definitions/Glossary

Client: Geosyntec Consultants Inc

Job ID: 140-32513-1

Project/Site: Vermilion SEP

Qualifiers

Metals

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight bas

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Knoxville

Page 4 of 36 8/3/2023

Case Narrative

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Job ID: 140-32513-1

Job ID: 140-32513-1

Laboratory: Eurofins Knoxville

Narrative

Job Narrative 140-32513-1

Receipt

The samples were received on 7/3/2023 at 11:15am and arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 20.3° C.

Receipt Exceptions

The Field Sampler was not listed on the Chain of Custody.

Metals

7 Step Sequential Extraction Procedure

These soil samples were prepared and analyzed using Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0008, "7 Step Sequential Extraction Procedure". SW-846 Method 6010B as incorporated in Eurofins TestAmerica Knoxville standard operating procedure KNOX-MT-0007 was used to perform the final instrument analyses.

An aliquot of each sample was sequentially extracted using the steps listed below:

- Step 1 Exchangeable Fraction: A 5 gram aliquot of sample was extracted with 25 mL of 1M magnesium sulfate (MgSO4), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 2 Carbonate Fraction: The sample residue from step 1 was extracted with 25 mL of 1M sodium acetate/acetic acid (NaOAc/HOAc) at pH 5, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 3 Non-crystalline Materials Fraction: The sample residue from step 2 was extracted with 25 mL of 0.2M ammonium oxalate (pH 3), centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 4 Metal Hydroxide Fraction: The sample residue from step 3 was extracted with 25 mL of 1M hydroxylamine hydrochloride solution in 25% v/v acetic acid, centrifuged and filtered. 5 mL of the resulting leachate was digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 5 Organic-bound Fraction: The sample residue from step 4 was extracted three times with 25 mL of 5% sodium hypochlorite (NaClO) at pH 9.5, centrifuged and filtered. The resulting leachates were combined and 5 mL were digested using method 3010A and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 6 Acid/Sulfide Fraction: The sample residue from step 5 was extracted with 25 mL of a 3:1:2 v/v solution of HCl-HNO3-H2O, centrifuged and filtered. 5 mL of the resulting leachate was diluted to 50 mL with reagent water and analyzed by method 6010B. Results are reported in mg/kg on a dry weight basis.
- Step 7 Residual Fraction: A 1.0 g aliquot of the sample residue from step 6 was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Results are reported in mg/kg on a dry weight basis.

In addition, a 1.0 g aliquot of the original sample was digested using HF, HNO3, HCl and H3BO3. The digestate was analyzed by ICP using method 6010B. Total metal results are reported in mg/kg on a dry weight basis.

Results were calculated using the following equation:

Result, $\mu g/g$ or mg/Kg, dry weight = $(C \times V \times V1 \times D) / (W \times S \times V2)$

Where:

C = Concentration from instrument readout, μg/mL

V = Final volume of digestate, mL

D = Instrument dilution factor

V1 = Total volume of leachate, mL

V2 = Volume of leachate digested, mL

W = Wet weight of sample, g

Eurofins Knoxville 8/3/2023

Case Narrative

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP Job ID: 140-32513-1

Job ID: 140-32513-1 (Continued)

Laboratory: Eurofins Knoxville (Continued)

S = Percent solids/100

A method blank, laboratory control sample and laboratory control sample duplicate were prepared and analyzed with each SEP step in order to provide information about both the presence of elements of interest in the extraction solutions, and the recovery of elements of interest from the extraction solutions. Results outside of laboratory QC limits do not reflect out of control performance, but rather the effect of the extraction solution upon the analyte.

A laboratory sample duplicate was prepared and analyzed with each batch of samples in order to provide information regarding the reproducibility of the procedure.

SEP Report Notes:

The final report lists the results for each step, the result for the total digestion of the sample, and a sum of the results of steps 1 through 7 by element.

Magnesium was not reported for step 1 because the extraction solution for this step (magnesium sulfate) contains high levels of magnesium.

Sodium was not reported for steps 2 and 5 since the extraction solution for these steps contain high levels of sodium.

The sum of steps 1 through 7 is much higher than the total result for sodium and magnesium due to the magnesium and sodium introduced by the extraction solutions.

The digestates for steps 1, 2 and 5 were analyzed at a dilution due to instrument problems caused by the high solids content of the digestates. The reporting limits were adjusted accordingly.

The serial dilution is analyzed at an additional 5 fold dilution using the dilution factors applied to the duplicate and the associated original sample. Due to a limitation of the expanded deliverable forms, the dilutions of the duplicate and serial dilution in the expanded deliverable are not expressed on a per analyte basis.

Please refer to the summary section of the report for the duplicate information as it contains the dilution factors at which the sample was analyzed.

Method 6010B: The serial dilution performed for the following samples associated with batch 140-75976 were outside control limits: VER-35 55-60 20230624 (140-32513-1), (140-32513-A-1-C SD ^10) and (140-32513-A-1-C SD ^5)

Method 6010B: The following samples were diluted to bring the concentration of target analyte, Iron, within the calibration range: VER-35 55-60 20230624 (140-32513-1), VER-35 60-63 20230624 (140-32513-2) and VER-70 75-80 20230623 (140-32513-3). Elevated reporting limits (RLs) are provided.

Method 6010B SEP: The serial dilution performed for the following samples associated with batch 140-75894 was outside control limits: VER-35 55-60 20230624 (140-32513-1), (140-32513-A-1-S SD ^5) and (140-32513-A-1-W SD ^5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

% Moisture: The samples were analyzed for percent moisture using SOP number KNOX-WC-0012 (based on Modified MCAWW 160.3 and SM2540B and on the percent moisture determinations described in methods 3540C and 3550B).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

6

Q

9

10

12

1,

Sample Summary

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Job ID: 140-32513-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
140-32513-1	VER-35 55-60 20230624	Solid	06/24/23 14:20	07/03/23 11:15
140-32513-2	VER-35 60-63 20230624	Solid	06/24/23 14:50	07/03/23 11:15
140-32513-3	VER-70 75-80 20230623	Solid	06/23/23 17:00	07/03/23 11:15

1

Q

9

10

Client Sample Results

Client: Geosyntec Consultants Inc

Project/Site: Vermilion SEP

Lab Sample ID: 140-32513-1

Client Sample ID: VER-35 55-60 20230624 Date Collected: 06/24/23 14:20 **Matrix: Solid** Date Received: 07/03/23 11:15

Percent Solids: 95.4

Job ID: 140-32513-1

Date Received: 07/03/23 11:15	5							Percent Solid	ls: 95.4
Mothod: SW946 6040B SED	CED Metale	(ICD) Ston	4						
Method: SW846 6010B SEP				MDI	11!4	_	Duamanad	A a l a d	D!! F
Analyte	_ Result ND	Qualifier	RL 21		Unit	— <u>¬</u>	Prepared 07/11/22 08:00	Analyzed	Dil Fac
Iron	ND ND		10		mg/Kg	≎	07/11/23 08:00	07/27/23 13:01	
Lithium					mg/Kg	φ.	07/11/23 08:00	07/27/23 13:01 07/27/23 13:01	4
Manganese 	7.6		3.1	0.13	mg/Kg	☼	07/11/23 08:00	07/27/23 13:01	4
Method: SW846 6010B SEP	- SEP Metals	(ICP) - Step	2						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	560		16	9.1	mg/Kg	☆	07/12/23 08:00	07/27/23 13:51	3
Lithium	0.56	J	7.9	0.47	mg/Kg	☼	07/12/23 08:00	07/27/23 13:51	3
Manganese	29		2.4	0.88	mg/Kg	₽	07/12/23 08:00	07/27/23 13:51	3
Method: SW846 6010B SEP	SED Motals	(ICP) - Ston	3						
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Iron	4300	- Qualifier	5.2	3.0		— -	07/13/23 08:00	07/27/23 14:40	1
Lithium	0.52	1	2.6		mg/Kg	Ď.	07/13/23 08:00	07/27/23 14:40	1
Manganese	110		0.79		mg/Kg	Ď.		07/27/23 14:40	1
- Wanganese	110		0.73	0.020	mg/rtg	**	01/10/20 00:00	01/21/25 14.40	'
Method: SW846 6010B SEP	- SEP Metals	(ICP) - Step	4						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Iron	20000		5.2	3.0	mg/Kg	☼	07/17/23 08:00	07/28/23 12:49	1
Lithium	13		2.6		mg/Kg	☼	07/17/23 08:00	07/28/23 12:49	1
Manganese	430		0.79	0.14	mg/Kg	₽	07/17/23 08:00	07/28/23 12:49	1
Method: SW846 6010B SEP	- SFP Metals	(ICP) - Step	5						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		79	46	mg/Kg	— <u></u>	07/19/23 08:00	07/28/23 13:39	5
Lithium	4.1	J	39	2.3	mg/Kg	☼	07/19/23 08:00	07/28/23 13:39	5
Manganese	46		12	1.9	mg/Kg	≎	07/19/23 08:00	07/28/23 13:39	5
	SED Motals	(ICP) Stop	6						
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Iron	11000	Qualifier	5.2	3.0		— "	07/19/23 08:00	07/28/23 14:29	1
Lithium	13		2.6		mg/Kg	₩	07/19/23 08:00	07/28/23 14:29	1
Manganese	130		0.79		mg/Kg	₩		07/28/23 14:29	1
- manganese	130		0.70	0.20	mg/rtg	~	01/10/20 00:00	01120120 14.20	
Method: SW846 6010B SEP									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Iron	4300		5.2		mg/Kg	₩	07/20/23 08:00		1
Lithium	15		2.6		mg/Kg	₩		07/31/23 12:46	1
Manganese	31		0.79	0.32	mg/Kg	₩	07/20/23 08:00	07/31/23 12:46	1
Method: SW846 6010B SEP	- SEP Metals	(ICP) - Sum	of Steps 1-	7					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Iron	41000		5.0	4.1	mg/Kg			08/02/23 14:24	1
Lithium	46		2.5	0.15	mg/Kg			08/02/23 14:24	1
Manganese	780		0.75	0.052	mg/Kg			08/02/23 14:24	1
Method: SW846 6010B - SEF	Metals (ICD)) - Total							
Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Iron	38000		10		mg/Kg	— <u>=</u>	07/21/23 08:00	07/31/23 14:12	2
Lithium	42		2.6		mg/Kg		07/21/23 08:00		1
	72		2.0	5.10	9'''9	~		5.,5.,20 10.22	

0.79

0.32 mg/Kg

610

Manganese

Eurofins Knoxville

Page 8 of 36 8/3/2023

☼ 07/21/23 08:00 07/31/23 13:22

Client Sample Results

Client: Geosyntec Consultants Inc

Date Collected: 06/24/23 14:50

Client Sample ID: VER-35 60-63 20230624

Project/Site: Vermilion SEP

Manganese

Lab Sample ID: 140-32513-2

Matrix: Solid

Job ID: 140-32513-1

No	ate Received: 07/03/23 11:15								Percent Solid	ls: 95
Institute Result Qualifier RL MDL Unit D Prepared Analyzed Dile	Method: SW846 6010B SED - SE	ED Motals	(ICP) - Stop 1							
	Analyte		. , .		MDL	Unit	D	Prepared	Analyzed	Dil F
	Iron	ND		21	12	mg/Kg	— <u>-</u>	07/11/23 08:00	07/27/23 13:11	
Method: SW846 6010B SEP - SEP Metals (ICP) - Step 2 Malyte Result Qualifier RL MDL Unit D Prepared Analyzed DI	Lithium	ND		10			₩	07/11/23 08:00	07/27/23 13:11	
Method: SW846 6010B SEP - SEP Metals (ICP) - Step 2 Malyte Result Qualifier RL MDL Unit Uni	Manganese	7.9		3.1	0.13	mg/Kg	₩	07/11/23 08:00	07/27/23 13:11	
Manylye Result Qualifier RL MDL Unit D Prepared Analyzed Dil						0 0				
STO 16	Method: SW846 6010B SEP - SE	EP Metals	(ICP) - Step 2							
Inthium	Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil F
Method: SW846 6010B SEP - SEP Metals (ICP) - Step 3 Maylyte Result Qualifier RL MDL Unit D Prepared Maylyte Maylyte	ron	570		16	9.1	mg/Kg	₩	07/12/23 08:00	07/27/23 14:01	
Method: SW846 6010B SEP - SEP Metals (ICP) - Step 3 Malyte Result Qualifier RL MDL Unit D Propared Analyzad Dil Propared Malyzad Dil D	ithium	0.62	J	7.9	0.47	mg/Kg	☼			
Namalyte Result Qualifier RL MDL Unit D Prepared Analyzed Ditarton 4200 5.2 3.0 mg/kg 0 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28	Manganese	29		2.4	0.88	mg/Kg	₩	07/12/23 08:00	07/27/23 14:01	
Namayte Result Qualifier RL MDL Unit D Prepared Analyzed Ditarton 4200 5.2 3.0 mg/Kg 0 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/27/23 14:50 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 12:59 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:49 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/23 13:39 07/13/23 08:00 07/28/	4-41-4 OMO40 0040D OFD OF		(IOD) O(+++0							
					MDI	1114	_	B	A	D:: 1
Inthium 1.74 J 2.6 0.16 mg/Kg 0 0.71/3/23 08:00 07/27/23 14:50	<u> </u>		Qualifier							ווט
Internation										
Nethod: SW846 6010B SEP - SEP Metals (ICP) - Step 4 Result Qualifier RL MDL Unit D Prepared Analyzed Dit MI MI MI MI MI MI MI M										
Name	langanese	110	В	0.79	0.028	mg/Kg	₩	07/13/23 08:00	07/27/23 14:50	
Name	Method: SW846 6010R SEP - SE	EP Motals	(ICP) - Step 4							
			. , .		MDI	Unit	D	Prepared	Analyzed	Dil
Third 12 2.6 0.16 mg/Kg 0.7717/23 08:00 07/28/23 12:59 1.59 1	`									
Result Qualifier RL MDL Unit D Prepared Analyzed Dil Mg/Kg Mg/Kg										
No						0 0				
No No No No No No No No	_		(IOD) Otan E	ı						
ND 79 46 mg/Kg 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 13:49 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/19/23 08:00 07/28/23 14:39 07/28/23 08:00 07/28/23 14:39 07/28/23 08:00 07/28/23 14:39 07/28/23 08:00 07/28/23 14:39 07/28/23 08:00 07/28/23 14:39 07/28/23 08:00 07/28/23 14:39 07/28/23 08:00 07/28/23 14:24 07/28/23 08:00					MDL	Unit	D	Prepared	Analyzed	Dil
Sthium 3.9	on	ND		79	46	mg/Kg	— <u>-</u>	07/19/23 08:00	07/28/23 13:49	
Second S	ithium	3.9	J	39			₩	07/19/23 08:00	07/28/23 13:49	
Result Qualifier RL MDL Unit D Prepared Analyzed Dil	langanese	35		12			₩	07/19/23 08:00	07/28/23 13:49	
Result Qualifier RL MDL Unit D Prepared Analyzed Dil	_									
1000 11000 5.2 3.0 mg/Kg 3 07/19/23 08:00 07/28/23 14:39 1410 14 2.6 0.16 mg/Kg 3 07/19/23 08:00 07/28/23 14:39 1410 0.79 0.26 mg/Kg 3 07/19/23 08:00 07/28/23 14:39 1410 0.79 0.26 mg/Kg 3 07/19/23 08:00 07/28/23 14:39 1410 0.79 0.26 mg/Kg 3 07/19/23 08:00 07/28/23 14:39 1410 0.79 0.26 mg/Kg 3 0.79	lethod: SW846 6010B SEP - SE	EP Metals	(ICP) - Step 6							
Stribium	nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil
Internation	on	11000		5.2	3.0	mg/Kg	☼	07/19/23 08:00	07/28/23 14:39	
Method: SW846 6010B SEP - SEP Metals (ICP) - Step 7 malyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Original Origina	ithium	14		2.6	0.16	mg/Kg	₩	07/19/23 08:00	07/28/23 14:39	
Result Qualifier RL MDL Unit D Prepared Analyzed Dil	langanese	140		0.79	0.26	mg/Kg	₩	07/19/23 08:00	07/28/23 14:39	
Result Qualifier RL MDL Unit D Prepared Analyzed Dil			(IOD) O(
Second S			. , .		MDI	1114	_	B	A	ъ.,
14			Qualifier							DII
Second										
Name										
Result Qualifier RL MDL Unit D Prepared Analyzed Dil	anganese	30		0.79	0.33	mg/Kg	Đ:	07/20/23 08:00	07/31/23 12:57	
Result Qualifier RL MDL Unit D Prepared Analyzed Dil	lethod: SW846 6010B SEP - SE	EP Metals	(ICP) - Sum o	f Steps 1-	7					
ithium 45 2.5 0.15 mg/Kg 08/02/23 14:24 langanese 730 0.75 0.052 mg/Kg 08/02/23 14:24 lethod: SW846 6010B - SEP Metals (ICP) - Total nalyte Result Qualifier RL MDL Unit D Prepared 07/21/23 08:00 Analyzed 07/31/23 14:22 Dil 07/31/23 14:22			•			Unit	D	Prepared	Analyzed	Dil
ithium 45 2.5 0.15 mg/Kg 08/02/23 14:24 langanese 730 0.75 0.052 mg/Kg 08/02/23 14:24 lethod: SW846 6010B - SEP Metals (ICP) - Total nalyte Result Qualifier RL MDL Unit D Prepared 07/21/23 08:00 Analyzed 07/31/23 14:22 Dil on 37000 10 8.6 mg/Kg 07/21/23 08:00 07/31/23 14:22				5.0						
Tanganese				2.5					08/02/23 14:24	
nalyte Result on Qualifier RL 10 MDL with mg/Kg D mg/Kg Prepared prepared of 07/21/23 08:00 Analyzed of 07/31/23 14:22 Dil of 07/21/23 08:00										
Analyte Result on Qualifier RL on MDL on Unit on Description Prepared on Analyzed on Dil on 37000 10 8.6 mg/Kg 07/21/23 08:00 07/31/23 14:22 Dil on	Method: SW846 6010R - SEP M	etals (ICP)) - Total							
37000 10 8.6 mg/Kg \$\overline{\text{o7/21/23 08:00}}\$\overline{\text{o7/31/23 14:22}}\$		•	•	RI	MDI	Unit	D	Prepared	Analyzed	Dil
• • • • • • • • • • • • • • • • • • • •			<u> </u>							- 11
	ithium.	37000		2.6						

0.79

520

0.33 mg/Kg

Eurofins Knoxville

Page 9 of 36 8/3/2023

07/21/23 08:00 07/31/23 13:33

Client Sample Results

Client: Geosyntec Consultants Inc

Project/Site: Vermilion SEP

Manganese

Client Sample ID: VER-70 75-80 20230623 Lab Sample ID: 140-32513-3

Date Collected: 06/23/23 17:00 **Matrix: Solid**

Date Received: 07/03/23 11:15	5							Percent Solid	ls: 90.0
Method: SW846 6010B SEP	- SEP Metals	(ICP) - Step 1							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	ND		22	13	mg/Kg	<u></u>	07/11/23 08:00	07/27/23 13:16	
Lithium	ND		11		mg/Kg	☼	07/11/23 08:00	07/27/23 13:16	4
Manganese	7.6		3.3		mg/Kg	≎	07/11/23 08:00	07/27/23 13:16	4
Method: SW846 6010B SEP	- SEP Motals	(ICP) - Sten 2							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	730		17	9.7		<u>_</u>	07/12/23 08:00	07/27/23 14:06	
Lithium	ND		8.3		mg/Kg	ά	07/12/23 08:00	07/27/23 14:06	;
Manganese	36		2.5		mg/Kg	≎		07/27/23 14:06	
Mathad: SW946 6010B SED	SED Motals	(ICB) Stop 2							
Method: SW846 6010B SEP Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
<u> </u>		Qualifier	5.6		mg/Kg	— -	07/13/23 08:00	07/27/23 14:55	— ППГа
lron	5500		2.8		mg/Kg		07/13/23 08:00	07/27/23 14:55	
Lithium	0.41					₩.			
Manganese	130	В	0.83	0.030	mg/Kg	₩	07/13/23 08:00	07/27/23 14:55	
Method: SW846 6010B SEP		. ,							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ron	31000		11		mg/Kg	₩	07/17/23 08:00	07/28/23 14:55	
Lithium	12		2.8	0.17	mg/Kg	₩	07/17/23 08:00	07/28/23 13:04	
Manganese	510		0.83	0.14	mg/Kg	☼	07/17/23 08:00	07/28/23 13:04	
Method: SW846 6010B SEP	- SEP Metals	(ICP) - Step 5							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	61	J	83	49	mg/Kg	<u></u>	07/19/23 08:00	07/28/23 13:54	
Lithium	4.4	J	42	2.4	mg/Kg	₽	07/19/23 08:00	07/28/23 13:54	
Manganese	54		12		mg/Kg	₩	07/19/23 08:00	07/28/23 13:54	
Method: SW846 6010B SEP	- SEP Metals	(ICP) - Step 6							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	14000		5.6	3.2	mg/Kg	— <u></u>	07/19/23 08:00	07/28/23 14:44	
Lithium	15		2.8		mg/Kg	₩	07/19/23 08:00	07/28/23 14:44	
Manganese	160		0.83		mg/Kg	☼		07/28/23 14:44	
Method: SW846 6010B SEP	- SED Motals	(ICP) - Step 7							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	5500		5.6	4.6	mg/Kg	-	07/20/23 08:00	07/31/23 13:17	
Lithium	19		2.8	0.17	mg/Kg	☆	07/20/23 08:00	07/31/23 13:17	
Manganese	39		0.83	0.34	mg/Kg	₩	07/20/23 08:00	07/31/23 13:17	
Method: SW846 6010B SEP	- SEP Metals	(ICP) - Sum of	Steps 1-7						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	57000		5.0	4.1	mg/Kg			08/02/23 14:24	
Lithium	51		2.5		mg/Kg			08/02/23 14:24	
Manganese	940		0.75		mg/Kg			08/02/23 14:24	
Method: SW846 6010B - SEF	P Metals (ICP)) - Total							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Iron	66000		28		mg/Kg			07/31/23 15:08	
Lithium	42		2.8		mg/Kg	☆	07/21/23 08:00	07/31/23 13:39	
				0.04		.,,	07/04/00 00 00	07/04/00 40 00	

Eurofins Knoxville

© 07/21/23 08:00 07/31/23 13:39

Page 10 of 36

0.83

720

0.34 mg/Kg

Job ID: 140-32513-1

8/3/2023

Client: Geosyntec Consultants Inc

Project/Site: Vermilion SEP

Method: 6010B SEP - SEP Metals (ICP) - Step 1

Prep: 3010A

SEP: Exchangeable

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.031	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 2

Prep: 3010A **SEP: Carbonate**

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.28	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 3

Prep: 3010A

SEP: Non-Crystalline

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.027	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 4

Prep: 3010A

SEP: Metal Hydroxide

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.13	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 5

Prep: 3010A

SEP: Organic-Bound

Analyte	RL	MDL	Units
Iron	15	8.8	mg/Kg
Lithium	7.5	0.44	mg/Kg
Manganese	2.3	0.37	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 6

SEP: Acid/Sulfide

Analyte	RL	MDL	Units
Iron	5.0	2.9	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.25	mg/Kg

Method: 6010B SEP - SEP Metals (ICP) - Step 7

Prep: Residual

Analyte	RL	MDL	Units
Iron	5.0	4.1	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.31	mg/Kg

Eurofins Knoxville

Page 11 of 36

Default Detection Limits

Client: Geosyntec Consultants Inc Job ID: 140-32513-1

Project/Site: Vermilion SEP

Method: 6010B SEP - SEP Metals (ICP) - Sum of Steps 1-7

Analyte	RL	MDL	Units
Iron	5.0	4.1	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.052	mg/Kg

Method: 6010B - SEP Metals (ICP) - Total

Prep: Total

Analyte	RL	MDL	Units
Iron	5.0	4.1	mg/Kg
Lithium	2.5	0.15	mg/Kg
Manganese	0.75	0.31	mg/Kg

Л

4

5

9

10

11

Client: Geosyntec Consultants Inc Job ID: 140-32513-1

Project/Site: Vermilion SEP

Method: 6010B - SEP Metals (ICP) - Total

Lab Sample ID: MB 140-75187/5-A

Matrix: Solid

Analysis Batch: 75976

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 75187

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		5.0	4.1	mg/Kg		07/21/23 08:00	07/31/23 12:31	1
Lithium	ND		2.5	0.15	mg/Kg		07/21/23 08:00	07/31/23 12:31	1
Manganese	ND		0.75	0.31	mg/Kg		07/21/23 08:00	07/31/23 12:31	1

MD MD

Lab Sample ID: LCS 140-75187/6-A

Matrix: Solid

Analysis Batch: 75976

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 75187

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	50.0	53.2		mg/Kg		106	80 - 120	
Lithium	5.00	5.23		mg/Kg		105	80 - 120	
Manganese	5.00	5.21		mg/Kg		104	80 - 120	

Lab Sample ID: LCSD 140-75187/7-A

Matrix: Solid

Analysis Batch: 75976

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 75187

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	50.0	54.5		mg/Kg		109	80 - 120	2	30
Lithium	5.00	5.14		mg/Kg		103	80 - 120	2	30
Manganese	5.00	5.27		mg/Kg		105	80 - 120	1	30

Lab Sample ID: 140-32513-1 DU

Matrix: Solid

Analysis Batch: 75976

Client Sample ID: VER-35 55-60 20230624

Prep Type: Total/NA

Prep Batch: 75187

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit Limit Lithium 42 42.1 mg/Kg 0 30 Manganese 610 613 mg/Kg

Lab Sample ID: 140-32513-1 DU

Matrix: Solid

Analysis Batch: 75976

Client Sample ID: VER-35 55-60 20230624

Prep Type: Total/NA

Prep Batch: 75187 **RPD**

DU DU Sample Sample Result Qualifier Analyte Result Qualifier Unit D RPD Limit 38000 Iron 39200 mg/Kg

Method: 6010B SEP - SEP Metals (ICP)

Lab Sample ID: MB 140-75184/5-B ^4

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Method Blank

Prep Type: Step 1

Prep Batch: 75207

MR MR

ı		1410	1410							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Iron	ND		20	12	mg/Kg		07/11/23 08:00	07/27/23 12:47	4
I	Lithium	ND		10	0.60	mg/Kg		07/11/23 08:00	07/27/23 12:47	4
	Manganese	ND		3.0	0.12	mg/Kg		07/11/23 08:00	07/27/23 12:47	4

Eurofins Knoxville

Page 13 of 36

Client: Geosyntec Consultants Inc Job ID: 140-32513-1 Project/Site: Vermilion SEP

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCS 140-75184/6-B ^5

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Lab Control Sample

Prep Type: Step 1 Prep Batch: 75207

-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	50.0	54.4		mg/Kg		109	80 - 120
Lithium	5.00	5.66	J	mg/Kg		113	80 - 120
Manganese	5.00	5.54		mg/Kg		111	80 - 120

Lab Sample ID: LCSD 140-75184/7-B ^5

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Lab Control Sample Dup Prep Type: Step 1

Prep Batch: 75207

-	Allaryold Batolii 1001 i							op =	outon	U_U .
		Spike	LCSD	LCSD				%Rec		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Iron	 50.0	54.2		mg/Kg		108	80 - 120	0	30
ı	Lithium	5.00	5.44	J	mg/Kg		109	80 - 120	4	30
L	Manganese	5.00	5.51		mg/Kg		110	80 - 120	1	30

Lab Sample ID: 140-32513-1 DU

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: VER-35 55-60 20230624

Prep Type: Step 1 Prep Batch: 75207

7 , 0.00 = 0.00								 	
	Sample	Sample	0	U	DU				RPD
Analyte	Result	Qualifier	Resu	ilt (Qualifier	Unit	D	RPD	Limit
Iron	ND			D		mg/Kg	☼	 NC	30
Lithium	ND		N	D		mg/Kg	☼	NC	30
Manganese	7.6		7.2	29		mg/Kg	₩	4	30

Lab Sample ID: MB 140-75227/5-B ^3

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Method Blank

Prep Type: Step 2 Prep Batch: 75260

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		15	8.7	mg/Kg		07/12/23 08:00	07/27/23 13:36	3
Lithium	ND		7.5	0.45	mg/Kg		07/12/23 08:00	07/27/23 13:36	3
Manganese	ND		2.3	0.84	mg/Kg		07/12/23 08:00	07/27/23 13:36	3

Lab Sample ID: LCS 140-75227/6-B ^5

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Lab Control Sample Prep Type: Step 2

Prep Batch: 75260

•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Iron	50.0	ND		mg/Kg		3	
Lithium	5.00	5.13	J	mg/Kg		103	80 - 120
Manganese	5.00	5.01		mg/Kg		100	80 - 120

Lab Sample ID: LCSD 140-75227/7-B ^5

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 2 Prep Batch: 75260

Analysis Datem, 1901 i							i icp i	Jacon. 1	3200	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Iron	50.0	ND		mg/Kg		3		28		
Lithium	5.00	4.95	J	mg/Kg		99	80 - 120	4	30	
Manganese	5.00	4.96		mg/Kg		99	80 - 120	1	30	

Eurofins Knoxville

8/3/2023

Page 14 of 36

Client: Geosyntec Consultants Inc Job ID: 140-32513-1 Project/Site: Vermilion SEP

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Sample Sample

Lab Sample ID: 140-32513-1 DU

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: VER-35 55-60 20230624

Prep Type: Step 2

Prep Batch: 75260

RPD Unit RPD Limit D 70

Result Qualifier Result Qualifier Analyte Iron 560 531 mg/Kg 5 Lithium 0.56 J ND mg/Kg ₩ NC 30 29 27.9 mg/Kg 30 Manganese ά

DU DU

Lab Sample ID: MB 140-75274/5-B

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Method Blank **Prep Type: Step 3**

Prep Batch: 75294

MB MB Analyte Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Dil Fac 5.0 07/13/23 08:00 07/27/23 14:26 Iron ND 2.9 mg/Kg 2.5 Lithium ND 0.15 mg/Kg 07/13/23 08:00 07/27/23 14:26 0.75 07/13/23 08:00 07/27/23 14:26 Manganese 0.0935 J 0.027 mg/Kg

Lab Sample ID: LCS 140-75274/6-B

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Lab Control Sample

Prep Type: Step 3 Prep Batch: 75294

Spike LCS LCS %Rec Added Result Qualifier Analyte Unit D %Rec Limits Iron 50.0 51.9 mg/Kg 104 80 - 120 Lithium 5.00 4.98 mg/Kg 100 80 - 120 5.00 Manganese 5.04 mg/Kg 101 80 - 120

Lab Sample ID: LCSD 140-75274/7-B

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 3 Prep Batch: 75294

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier RPD Analyte Unit D %Rec Limits Limit Iron 50.0 49.5 99 80 - 120 5 30 mq/Kq 5.00 4 82 96 30 Lithium mg/Kg 80 - 120 3 Manganese 5.00 4.89 mg/Kg 98 80 - 120 30

Lab Sample ID: 140-32513-1 DU

Matrix: Solid

Analysis Batch: 75871

Client Sample ID: VER-35 55-60 20230624

Prep Type: Step 3

Prep Batch: 75294

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit ₩ Iron 4300 4280 mg/Kg 30 0.52 J 0.516 J mg/Kg 30 Lithium ť 110 B 114 mg/Kg 30 Manganese

Lab Sample ID: MB 140-75320/5-B

Matrix: Solid

Analysis Batch: 75894

Client Sample ID: Method Blank

Prep Type: Step 4 Prep Batch: 75407

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		5.0	2.9	mg/Kg		07/17/23 08:00	07/28/23 12:35	1
Lithium	ND		2.5	0.15	mg/Kg		07/17/23 08:00	07/28/23 12:35	1
Manganese	ND		0.75	0.13	mg/Kg		07/17/23 08:00	07/28/23 12:35	1

Eurofins Knoxville

8/3/2023

Page 15 of 36

Client: Geosyntec Consultants Inc Job ID: 140-32513-1

Project/Site: Vermilion SEP

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCS 140-75320/6-B

Matrix: Solid

Analysis Batch: 75894

Client Sample ID: Lab Control Sample

Prep Type: Step 4 Prep Batch: 75407

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	50.0	55.0		mg/Kg	_	110	80 - 120	
Lithium	5.00	5.38		mg/Kg		108	80 - 120	
Manganese	5.00	5.49		mg/Kg		110	80 - 120	

Lab Sample ID: LCSD 140-75320/7-B

Matrix: Solid

Analysis Batch: 75894

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 4

Prep Batch: 75407

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	 50.0	54.6		mg/Kg		109	80 - 120	1	30
Lithium	5.00	5.41		mg/Kg		108	80 - 120	0	30
Manganese	5.00	5.45		mg/Kg		109	80 - 120	1	30

Lab Sample ID: 140-32513-1 DU

Matrix: Solid

Analysis Batch: 75894

Client Sample ID: VER-35 55-60 20230624

Prep Type: Step 4

Prep Batch: 75407

	Sample	Sample	DU	DU			•		RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Iron	20000		19600		mg/Kg	\$		4	30
Lithium	13		12.6		mg/Kg	₽		3	30
Manganese	430		406		mg/Kg	₩		5	30

Lab Sample ID: MB 140-75406/5-B ^5

Matrix: Solid

Analysis Batch: 75894

Client Sample ID: Method Blank

Prep Type: Step 5

Prep Batch: 75487

	MB ME	В					•	
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND ND	75	44	mg/Kg		07/19/23 08:00	07/28/23 13:24	5
Lithium	ND	38	2.2	mg/Kg		07/19/23 08:00	07/28/23 13:24	5
Manganese	ND	11	1.9	mg/Kg		07/19/23 08:00	07/28/23 13:24	5

Lab Sample ID: LCS 140-75406/6-B ^5

Matrix: Solid

Analysis Batch: 75894

Client Sample ID: Lab Control Sample Prep Type: Step 5

Prep Batch: 75487

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	150	ND		mg/Kg		-0.07		
Lithium	15.0	16.9	J	mg/Kg		112	80 - 150	
Manganese	15.0	3.96	J	mg/Kg		26	1 - 60	

Lab Sample ID: LCSD 140-75406/7-B ^5

Matrix: Solid

Analysis Batch: 75894

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 5 Prep Batch: 75487

/ many one Datom recor.									• . • .
-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	150	ND		mg/Kg		-0.5		156	
Lithium	15.0	16.7	J	mg/Kg		111	80 - 150	1	30
Manganese	15.0	4.01	J	mg/Kg		27	1 - 60	1	30

Eurofins Knoxville

8/3/2023

Client: Geosyntec Consultants Inc Job ID: 140-32513-1

Client Sample ID: VER-35 55-60 20230624

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Step 5

Prep Type: Step 6

Prep Type: Step 6

Project/Site: Vermilion SEP

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: 140-32513-1 DU

Matrix: Solid Analysis Batch: 75894

Prep Batch: 75487 DU DU Sample Sample **RPD** Result Qualifier Result Qualifier Unit RPD Limit Analyte D Iron ND ND mg/Kg ₩ NC mg/Kg Lithium 4.1 J 4.21 J ☼ 2 30 46 40.0 mg/Kg 30 Manganese 14 ₿

Lab Sample ID: MB 140-75511/5-A

Matrix: Solid

Prep Type: Step 6 Analysis Batch: 75894 Prep Batch: 75511 MB MB

Analyte Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Dil Fac 5.0 2.9 07/19/23 08:00 07/28/23 14:14 Iron ND mg/Kg 2.5 Lithium ND 0.15 mg/Kg 07/19/23 08:00 07/28/23 14:14 ND 0.75 07/19/23 08:00 07/28/23 14:14 Manganese 0.25 mg/Kg

Lab Sample ID: LCS 140-75511/6-A

Matrix: Solid

Analysis Batch: 75894

Prep Batch: 75511 Spike LCS LCS %Rec Added Result Qualifier Analyte Unit D %Rec Limits Iron 50.0 54.8 mg/Kg 110 80 - 120 Lithium 5.00 5.27 mg/Kg 105 80 - 120 5.00 mg/Kg Manganese 5.47 109 80 - 120

Lab Sample ID: LCSD 140-75511/7-A

Matrix: Solid

Analysis Batch: 75894							Prep I	Batch: 1	75511
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	50.0	50.7		mg/Kg		101	80 - 120	8	30
Lithium	5.00	4.89		mg/Kg		98	80 - 120	7	30
Manganese	5.00	5.06		mg/Kg		101	80 - 120	8	30

Lab Sample ID: 140-32513-1 DU

Analysis Batch: 75894

Client Sample ID: VER-35 55-60 20230624 **Matrix: Solid** Prep Type: Step 6 Prep Batch: 75511

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit ₩ Iron 11000 10600 mg/Kg 30 mg/Kg 30 Lithium 13 12.7 ₩ 130 127 mg/Kg 30 Manganese

Lab Sample ID: MB 140-75565/5-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Step 7 Analysis Batch: 75976** Prep Batch: 75565

-		IVID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Iron	ND		5.0	4.1	mg/Kg		07/20/23 08:00	07/31/23 12:16	1
	Lithium	ND		2.5	0.15	mg/Kg		07/20/23 08:00	07/31/23 12:16	1
	Manganese	ND		0.75	0.31	mg/Kg		07/20/23 08:00	07/31/23 12:16	1

Eurofins Knoxville

8/3/2023

QC Sample Results

Client: Geosyntec Consultants Inc Job ID: 140-32513-1

Project/Site: Vermilion SEP

Method: 6010B SEP - SEP Metals (ICP) (Continued)

Lab Sample ID: LCS 140-75565/6-A

Matrix: Solid Analysis Batch: 75976 **Client Sample ID: Lab Control Sample**

Prep Type: Step 7 Prep Batch: 75565

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Iron 50.0 54.2 mg/Kg 108 80 - 120 Lithium 5.00 5.37 mg/Kg 107 80 - 120 5.00 5.35 mg/Kg 80 - 120 Manganese 107

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-75565/7-A **Matrix: Solid**

Analysis Batch: 75976

Spike LCSD LCSD **Prep Type: Step 7**

Prep Batch: 75565 %Rec **RPD** Limits RPD Limit 30 80 - 120 0

Analyte Added Result Qualifier Unit D %Rec 50.0 54.0 Iron mg/Kg 108 Lithium 5.00 106 30 5.29 mg/Kg 80 - 120 2 5.00 mg/Kg 80 - 120 30 Manganese 5.30 106

Lab Sample ID: 140-32513-1 DU Client Sample ID: VER-35 55-60 20230624

Matrix: Solid

Analysis Batch: 75976

Prep Type: Step 7 Prep Batch: 75565

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier RPD Limit Unit D Iron 4300 4610 mg/Kg ₩ 6 30 Lithium 15 16.0 mg/Kg ₩ 9 30 31 32.3 mg/Kg 30 Manganese ☼ 3

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Job ID: 140-32513-1

Metals

SEP Batch: 75184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 1	Solid	Exchangeable	
140-32513-2	VER-35 60-63 20230624	Step 1	Solid	Exchangeable	
140-32513-3	VER-70 75-80 20230623	Step 1	Solid	Exchangeable	
MB 140-75184/5-B ^4	Method Blank	Step 1	Solid	Exchangeable	
LCS 140-75184/6-B ^5	Lab Control Sample	Step 1	Solid	Exchangeable	
LCSD 140-75184/7-B ^5	Lab Control Sample Dup	Step 1	Solid	Exchangeable	
140-32513-1 DU	VER-35 55-60 20230624	Step 1	Solid	Exchangeable	

Prep Batch: 75187

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Total/NA	Solid	Total	
140-32513-2	VER-35 60-63 20230624	Total/NA	Solid	Total	
140-32513-3	VER-70 75-80 20230623	Total/NA	Solid	Total	
MB 140-75187/5-A	Method Blank	Total/NA	Solid	Total	
LCS 140-75187/6-A	Lab Control Sample	Total/NA	Solid	Total	
LCSD 140-75187/7-A	Lab Control Sample Dup	Total/NA	Solid	Total	
140-32513-1 DU	VER-35 55-60 20230624	Total/NA	Solid	Total	

Prep Batch: 75207

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 1	Solid	3010A	75184
140-32513-2	VER-35 60-63 20230624	Step 1	Solid	3010A	75184
140-32513-3	VER-70 75-80 20230623	Step 1	Solid	3010A	75184
MB 140-75184/5-B ^4	Method Blank	Step 1	Solid	3010A	75184
LCS 140-75184/6-B ^5	Lab Control Sample	Step 1	Solid	3010A	75184
LCSD 140-75184/7-B ^5	Lab Control Sample Dup	Step 1	Solid	3010A	75184
140-32513-1 DU	VER-35 55-60 20230624	Step 1	Solid	3010A	75184

SEP Batch: 75227

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 2	Solid	Carbonate	<u> </u>
140-32513-2	VER-35 60-63 20230624	Step 2	Solid	Carbonate	
140-32513-3	VER-70 75-80 20230623	Step 2	Solid	Carbonate	
MB 140-75227/5-B ^3	Method Blank	Step 2	Solid	Carbonate	
LCS 140-75227/6-B ^5	Lab Control Sample	Step 2	Solid	Carbonate	
LCSD 140-75227/7-B ^5	Lab Control Sample Dup	Step 2	Solid	Carbonate	
140-32513-1 DU	VER-35 55-60 20230624	Step 2	Solid	Carbonate	

Prep Batch: 75260

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 2	Solid	3010A	75227
140-32513-2	VER-35 60-63 20230624	Step 2	Solid	3010A	75227
140-32513-3	VER-70 75-80 20230623	Step 2	Solid	3010A	75227
MB 140-75227/5-B ^3	Method Blank	Step 2	Solid	3010A	75227
LCS 140-75227/6-B ^5	Lab Control Sample	Step 2	Solid	3010A	75227
LCSD 140-75227/7-B ^5	Lab Control Sample Dup	Step 2	Solid	3010A	75227
140-32513-1 DU	VER-35 55-60 20230624	Step 2	Solid	3010A	75227

SEP Batch: 75274

Γ					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 3	Solid	Non-Crystalline	

Eurofins Knoxville

Page 19 of 36

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP Job ID: 140-32513-1

Metals (Continued)

SEP Batch: 75274 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-2	VER-35 60-63 20230624	Step 3	Solid	Non-Crystalline	
140-32513-3	VER-70 75-80 20230623	Step 3	Solid	Non-Crystalline	
MB 140-75274/5-B	Method Blank	Step 3	Solid	Non-Crystalline	
LCS 140-75274/6-B	Lab Control Sample	Step 3	Solid	Non-Crystalline	
LCSD 140-75274/7-B	Lab Control Sample Dup	Step 3	Solid	Non-Crystalline	
140-32513-1 DU	VER-35 55-60 20230624	Step 3	Solid	Non-Crystalline	

Prep Batch: 75294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 3	Solid	3010A	75274
140-32513-2	VER-35 60-63 20230624	Step 3	Solid	3010A	75274
140-32513-3	VER-70 75-80 20230623	Step 3	Solid	3010A	75274
MB 140-75274/5-B	Method Blank	Step 3	Solid	3010A	75274
LCS 140-75274/6-B	Lab Control Sample	Step 3	Solid	3010A	75274
LCSD 140-75274/7-B	Lab Control Sample Dup	Step 3	Solid	3010A	75274
140-32513-1 DU	VER-35 55-60 20230624	Step 3	Solid	3010A	75274

SEP Batch: 75320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 4	Solid	Metal Hydroxide	
140-32513-2	VER-35 60-63 20230624	Step 4	Solid	Metal Hydroxide	
140-32513-3	VER-70 75-80 20230623	Step 4	Solid	Metal Hydroxide	
MB 140-75320/5-B	Method Blank	Step 4	Solid	Metal Hydroxide	
LCS 140-75320/6-B	Lab Control Sample	Step 4	Solid	Metal Hydroxide	
LCSD 140-75320/7-B	Lab Control Sample Dup	Step 4	Solid	Metal Hydroxide	
140-32513-1 DU	VER-35 55-60 20230624	Step 4	Solid	Metal Hydroxide	

SEP Batch: 75406

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 5	Solid	Organic-Bound	
140-32513-2	VER-35 60-63 20230624	Step 5	Solid	Organic-Bound	
140-32513-3	VER-70 75-80 20230623	Step 5	Solid	Organic-Bound	
MB 140-75406/5-B ^5	Method Blank	Step 5	Solid	Organic-Bound	
LCS 140-75406/6-B ^5	Lab Control Sample	Step 5	Solid	Organic-Bound	
LCSD 140-75406/7-B ^5	Lab Control Sample Dup	Step 5	Solid	Organic-Bound	
140-32513-1 DU	VER-35 55-60 20230624	Step 5	Solid	Organic-Bound	

Prep Batch: 75407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 4	Solid	3010A	75320
140-32513-2	VER-35 60-63 20230624	Step 4	Solid	3010A	75320
140-32513-3	VER-70 75-80 20230623	Step 4	Solid	3010A	75320
MB 140-75320/5-B	Method Blank	Step 4	Solid	3010A	75320
LCS 140-75320/6-B	Lab Control Sample	Step 4	Solid	3010A	75320
LCSD 140-75320/7-B	Lab Control Sample Dup	Step 4	Solid	3010A	75320
140-32513-1 DU	VER-35 55-60 20230624	Step 4	Solid	3010A	75320

Prep Batch: 75487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 5	Solid	3010A	75406
140-32513-2	VER-35 60-63 20230624	Step 5	Solid	3010A	75406

Eurofins Knoxville

8/3/2023

Page 20 of 36

2

5

0

10

11

12

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP Job ID: 140-32513-1

Metals (Continued)

Prep Batch: 75487 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-3	VER-70 75-80 20230623	Step 5	Solid	3010A	75406
MB 140-75406/5-B ^5	Method Blank	Step 5	Solid	3010A	75406
LCS 140-75406/6-B ^5	Lab Control Sample	Step 5	Solid	3010A	75406
LCSD 140-75406/7-B ^5	Lab Control Sample Dup	Step 5	Solid	3010A	75406
140-32513-1 DU	VER-35 55-60 20230624	Step 5	Solid	3010A	75406

SEP Batch: 75511

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 6	Solid	Acid/Sulfide	-
140-32513-2	VER-35 60-63 20230624	Step 6	Solid	Acid/Sulfide	
140-32513-3	VER-70 75-80 20230623	Step 6	Solid	Acid/Sulfide	
MB 140-75511/5-A	Method Blank	Step 6	Solid	Acid/Sulfide	
LCS 140-75511/6-A	Lab Control Sample	Step 6	Solid	Acid/Sulfide	
LCSD 140-75511/7-A	Lab Control Sample Dup	Step 6	Solid	Acid/Sulfide	
140-32513-1 DU	VER-35 55-60 20230624	Step 6	Solid	Acid/Sulfide	

Prep Batch: 75565

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 7	Solid	Residual	<u> </u>
140-32513-2	VER-35 60-63 20230624	Step 7	Solid	Residual	
140-32513-3	VER-70 75-80 20230623	Step 7	Solid	Residual	
MB 140-75565/5-A	Method Blank	Step 7	Solid	Residual	
LCS 140-75565/6-A	Lab Control Sample	Step 7	Solid	Residual	
LCSD 140-75565/7-A	Lab Control Sample Dup	Step 7	Solid	Residual	
140-32513-1 DU	VER-35 55-60 20230624	Step 7	Solid	Residual	

Analysis Batch: 75871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 1	Solid	6010B SEP	75207
140-32513-1	VER-35 55-60 20230624	Step 2	Solid	6010B SEP	75260
140-32513-1	VER-35 55-60 20230624	Step 3	Solid	6010B SEP	75294
140-32513-2	VER-35 60-63 20230624	Step 1	Solid	6010B SEP	75207
140-32513-2	VER-35 60-63 20230624	Step 2	Solid	6010B SEP	75260
140-32513-2	VER-35 60-63 20230624	Step 3	Solid	6010B SEP	75294
140-32513-3	VER-70 75-80 20230623	Step 1	Solid	6010B SEP	75207
140-32513-3	VER-70 75-80 20230623	Step 2	Solid	6010B SEP	75260
140-32513-3	VER-70 75-80 20230623	Step 3	Solid	6010B SEP	75294
MB 140-75184/5-B ^4	Method Blank	Step 1	Solid	6010B SEP	75207
MB 140-75227/5-B ^3	Method Blank	Step 2	Solid	6010B SEP	75260
MB 140-75274/5-B	Method Blank	Step 3	Solid	6010B SEP	75294
LCS 140-75184/6-B ^5	Lab Control Sample	Step 1	Solid	6010B SEP	75207
LCS 140-75227/6-B ^5	Lab Control Sample	Step 2	Solid	6010B SEP	75260
LCS 140-75274/6-B	Lab Control Sample	Step 3	Solid	6010B SEP	75294
LCSD 140-75184/7-B ^5	Lab Control Sample Dup	Step 1	Solid	6010B SEP	75207
LCSD 140-75227/7-B ^5	Lab Control Sample Dup	Step 2	Solid	6010B SEP	75260
LCSD 140-75274/7-B	Lab Control Sample Dup	Step 3	Solid	6010B SEP	75294
140-32513-1 DU	VER-35 55-60 20230624	Step 1	Solid	6010B SEP	75207
140-32513-1 DU	VER-35 55-60 20230624	Step 2	Solid	6010B SEP	75260
140-32513-1 DU	VER-35 55-60 20230624	Step 3	Solid	6010B SEP	75294

Eurofins Knoxville

8/3/2023

Page 21 of 36

2

5

O

10

Client: Geosyntec Consultants Inc
Project/Site: Vermilion SEP

Job ID: 140-32513-1

Metals

Analysis Batch: 75894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 4	Solid	6010B SEP	75407
140-32513-1	VER-35 55-60 20230624	Step 5	Solid	6010B SEP	75487
140-32513-1	VER-35 55-60 20230624	Step 6	Solid	6010B SEP	75511
140-32513-2	VER-35 60-63 20230624	Step 4	Solid	6010B SEP	75407
140-32513-2	VER-35 60-63 20230624	Step 5	Solid	6010B SEP	75487
140-32513-2	VER-35 60-63 20230624	Step 6	Solid	6010B SEP	75511
140-32513-3	VER-70 75-80 20230623	Step 4	Solid	6010B SEP	75407
140-32513-3	VER-70 75-80 20230623	Step 4	Solid	6010B SEP	75407
140-32513-3	VER-70 75-80 20230623	Step 5	Solid	6010B SEP	75487
140-32513-3	VER-70 75-80 20230623	Step 6	Solid	6010B SEP	75511
MB 140-75320/5-B	Method Blank	Step 4	Solid	6010B SEP	75407
MB 140-75406/5-B ^5	Method Blank	Step 5	Solid	6010B SEP	75487
MB 140-75511/5-A	Method Blank	Step 6	Solid	6010B SEP	75511
LCS 140-75320/6-B	Lab Control Sample	Step 4	Solid	6010B SEP	75407
LCS 140-75406/6-B ^5	Lab Control Sample	Step 5	Solid	6010B SEP	75487
LCS 140-75511/6-A	Lab Control Sample	Step 6	Solid	6010B SEP	75511
LCSD 140-75320/7-B	Lab Control Sample Dup	Step 4	Solid	6010B SEP	75407
LCSD 140-75406/7-B ^5	Lab Control Sample Dup	Step 5	Solid	6010B SEP	75487
LCSD 140-75511/7-A	Lab Control Sample Dup	Step 6	Solid	6010B SEP	75511
140-32513-1 DU	VER-35 55-60 20230624	Step 4	Solid	6010B SEP	75407
140-32513-1 DU	VER-35 55-60 20230624	Step 5	Solid	6010B SEP	75487
140-32513-1 DU	VER-35 55-60 20230624	Step 6	Solid	6010B SEP	75511

Analysis Batch: 75976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Step 7	Solid	6010B SEP	75565
140-32513-1	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187
140-32513-1	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187
140-32513-2	VER-35 60-63 20230624	Step 7	Solid	6010B SEP	75565
140-32513-2	VER-35 60-63 20230624	Total/NA	Solid	6010B	75187
140-32513-2	VER-35 60-63 20230624	Total/NA	Solid	6010B	75187
140-32513-3	VER-70 75-80 20230623	Step 7	Solid	6010B SEP	75565
140-32513-3	VER-70 75-80 20230623	Total/NA	Solid	6010B	75187
140-32513-3	VER-70 75-80 20230623	Total/NA	Solid	6010B	75187
MB 140-75187/5-A	Method Blank	Total/NA	Solid	6010B	75187
MB 140-75565/5-A	Method Blank	Step 7	Solid	6010B SEP	75565
LCS 140-75187/6-A	Lab Control Sample	Total/NA	Solid	6010B	75187
LCS 140-75565/6-A	Lab Control Sample	Step 7	Solid	6010B SEP	75565
LCSD 140-75187/7-A	Lab Control Sample Dup	Total/NA	Solid	6010B	75187
LCSD 140-75565/7-A	Lab Control Sample Dup	Step 7	Solid	6010B SEP	75565
140-32513-1 DU	VER-35 55-60 20230624	Step 7	Solid	6010B SEP	75565
140-32513-1 DU	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187
140-32513-1 DU	VER-35 55-60 20230624	Total/NA	Solid	6010B	75187

Analysis Batch: 76083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Sum of Steps 1-7	Solid	6010B SEP	
140-32513-2	VER-35 60-63 20230624	Sum of Steps 1-7	Solid	6010B SEP	
140-32513-3	VER-70 75-80 20230623	Sum of Steps 1-7	Solid	6010B SEP	

Eurofins Knoxville

8/3/2023

Page 22 of 36

2

3

4

6

8

9

4 4

10

Client: Geosyntec Consultants Inc

Job ID: 140-32513-1

Project/Site: Vermilion SEP

General Chemistry

Analysis Batch: 75814

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-32513-1	VER-35 55-60 20230624	Total/NA	Solid	Moisture	
140-32513-2	VER-35 60-63 20230624	Total/NA	Solid	Moisture	
140-32513-3	VER-70 75-80 20230623	Total/NA	Solid	Moisture	
140-32513-1 DU	VER-35 55-60 20230624	Total/NA	Solid	Moisture	

4

O

R

9

10

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Lab Sample ID: 140-32513-1

ib Sample ib. 140-32313-1

Matrix: Solid

Job ID: 140-32513-1

Client Sample ID: VER-35 55-60 20230624

Date Collected: 06/24/23 14:20 Date Received: 07/03/23 11:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Sum of Steps 1-7	Analysis Instrumer	6010B SEP at ID: NOEQUIP		1			76083	08/02/23 14:24	KNC	EET KNX
Total/NA	Analysis Instrumer	Moisture at ID: NOEQUIP		1			75814	07/26/23 15:29	ACW	EET KNX

Client Sample ID: VER-35 55-60 20230624

Date Collected: 06/24/23 14:20 Date Received: 07/03/23 11:15 Lab Sample ID: 140-32513-1

Matrix: Solid

Percent Solids: 95.4

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		1			75976	07/31/23 13:22	KNC	EET KNX
	Instrumer	nt ID: DUO								
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B nt ID: DUO		2			75976	07/31/23 14:12	KNC	EET KNX
Stop 1					5 00 a	25 ml	75101	07/10/22 12:20		EET KNIV
Step 1	SEP	Exchangeable			5.00 g 5 mL	25 mL	75184 75207	07/10/23 12:30 07/11/23 08:00		EET KNX
Step 1 Step 1	Prep Analysis	3010A 6010B SEP		4	5 IIIL	50 mL	75207 75871	07/11/23 08:00		EET KNX
элер т	•	nt ID: DUO		4			73071	01121123 13.01	KINC	EEIKINA
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis Instrumer	6010B SEP nt ID: DUO		3			75871	07/27/23 13:51	KNC	EET KNX
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			75871	07/27/23 14:40	KNC	EET KNX
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis Instrumer	6010B SEP nt ID: DUO		1			75894	07/28/23 12:49	KNC	EET KNX
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis Instrumer	6010B SEP nt ID: DUO		5			75894	07/28/23 13:39	KNC	EET KNX
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis Instrumer	6010B SEP nt ID: DUO		1			75894	07/28/23 14:29	KNC	EET KNX
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis Instrumer	6010B SEP		1			75976	07/31/23 12:46	KNC	EET KNX

3

4

6

8

10

12

1

8/3/2023

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Client Sample ID: VER-35 60-63 20230624 Lab Sample ID: 140-32513-2

Date Collected: 06/24/23 14:50 Date Received: 07/03/23 11:15

Matrix: Solid

Job ID: 140-32513-1

Batch Batch Dil Initial Final Batch Prepared Method **Factor** or Analyzed **Prep Type** Type Run **Amount Amount** Number Analyst Lab Sum of Steps 1-7 6010B SEP 76083 08/02/23 14:24 KNC EET KNX Analysis Instrument ID: NOEQUIP Total/NA Analysis Moisture 75814 07/26/23 15:29 ACW **EET KNX** Instrument ID: NOEQUIP

Client Sample ID: VER-35 60-63 20230624

Lab Sample ID: 140-32513-2 Date Collected: 06/24/23 14:50 **Matrix: Solid** Date Received: 07/03/23 11:15 Percent Solids: 95.4

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		1			75976	07/31/23 13:33	KNC	EET KNX
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis Instrumen	6010B t ID: DUO		2			75976	07/31/23 14:22	KNC	EET KNX
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis Instrumen	6010B SEP t ID: DUO		4			75871	07/27/23 13:11	KNC	EET KNX
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis Instrumen	6010B SEP t ID: DUO		3			75871	07/27/23 14:01	KNC	EET KNX
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis Instrumen	6010B SEP t ID: DUO		1			75871	07/27/23 14:50	KNC	EET KNX
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis Instrumen	6010B SEP t ID: DUO		1			75894	07/28/23 12:59	KNC	EET KNX
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis Instrumen	6010B SEP t ID: DUO		5			75894	07/28/23 13:49	KNC	EET KNX
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis Instrumen	6010B SEP t ID: DUO		1	_		75894	07/28/23 14:39	KNC	EET KNX
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis Instrumen	6010B SEP t ID: DUO		1	-		75976	07/31/23 12:57	KNC	EET KNX

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Client Sample ID: VER-70 75-80 20230623 Lab Sample ID: 140-32513-3

Date Collected: 06/23/23 17:00 Date Received: 07/03/23 11:15 Matrix: Solid

Job ID: 140-32513-1

Prep Type Sum of Steps 1-7	Batch Type Analysis Instrumen	Batch Method 6010B SEP t ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 76083	Prepared or Analyzed 08/02/23 14:24	Analyst KNC	EET KNX
Total/NA	Analysis Instrumen	Moisture t ID: NOEQUIP		1			75814	07/26/23 15:29	ACW	EET KNX

Client Sample ID: VER-70 75-80 20230623

Lab Sample ID: 140-32513-3 Date Collected: 06/23/23 17:00 **Matrix: Solid** Date Received: 07/03/23 11:15 Percent Solids: 90.0

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA Total/NA	Prep	Total 6010B		4	1.00 g	50 mL	75187	07/21/23 08:00		EET KNX
iotai/NA	Analysis Instrumer	ot ID: DUO		1			75976	07/31/23 13:39	KNC	EET KNX
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis Instrumer	6010B at ID: DUO		5			75976	07/31/23 15:08	KNC	EET KNX
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis Instrumer	6010B SEP at ID: DUO		4			75871	07/27/23 13:16	KNC	EET KNX
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis Instrumer	6010B SEP at ID: DUO		3			75871	07/27/23 14:06	KNC	EET KNX
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis Instrumer	6010B SEP at ID: DUO		1			75871	07/27/23 14:55	KNC	EET KNX
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis Instrumer	6010B SEP at ID: DUO		1			75894	07/28/23 13:04	KNC	EET KNX
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis Instrumer	6010B SEP at ID: DUO		2			75894	07/28/23 14:55	KNC	EET KNX
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis Instrumer	6010B SEP at ID: DUO		5			75894	07/28/23 13:54	KNC	EET KNX
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis Instrumer	6010B SEP at ID: DUO		1			75894	07/28/23 14:44	KNC	EET KNX
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis Instrumer	6010B SEP at ID: DUO		1	-		75976	07/31/23 13:17	KNC	EET KNX

Eurofins Knoxville

8/3/2023

Job ID: 140-32513-1

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Date Received: N/A

Client Sample ID: Method Blank

Lab Sample ID: MB 140-75184/5-B ^4 Date Collected: N/A

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Factor **Amount Amount** Number or Analyzed Type Run Analyst Lab SEP Exchangeable 5.00 g 25 mL 75184 07/10/23 12:30 LAH EET KNX Step 1 3010A 75207 Step 1 5 mL 50 mL 07/11/23 08:00 LAH **EET KNX** Prep Step 1 Analysis 6010B SEP 4 75871 07/27/23 12:47 KNC **EET KNX** Instrument ID: DUO

Client Sample ID: Method Blank

Date Collected: N/A

Lab Sample ID: MB 140-75187/5-A

Matrix: Solid

10

Batch Dil Initial Batch Batch Final Prepared Method Number or Analyzed **Prep Type** Type Run **Factor Amount** Amount Analyst Lab Total/NA Prep Total 1.00 g 50 mL 75187 07/21/23 08:00 LAH **EET KNX** Analysis Total/NA 6010B 75976 07/31/23 12:31 KNC **EET KNX** Instrument ID: DUO

Client Sample ID: Method Blank

Date Collected: N/A

Date Received: N/A

Date Received: N/A

Lab Sample ID: MB 140-75227/5-B ^3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis	6010B SEP		3			75871	07/27/23 13:36	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank

Date Collected: N/A

Date Received: N/A

Lab Sample ID: MB 140-75274/5-B

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 3	SEP	Non-Crystalline			5.00 g	25 mL	75274	07/12/23 08:00	LAH	EET KNX
Step 3	Prep	3010A			5 mL	50 mL	75294	07/13/23 08:00	LAH	EET KNX
Step 3	Analysis	6010B SEP		1			75871	07/27/23 14:26	KNC	EET KNX

Client Sample ID: Method Blank

Date Collected: N/A

Date Received: N/A

Lab	Sample	ID:	MB	140-	7	53	20 /	5-B

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 4	SEP	Metal Hydroxide			5.00 g	25 mL	75320	07/13/23 08:00	LAH	EET KNX
Step 4	Prep	3010A			5 mL	50 mL	75407	07/17/23 08:00	LAH	EET KNX
Step 4	Analysis	6010B SEP		1			75894	07/28/23 12:35	KNC	EET KNX
Step 4	,	6010B SEP		1			75894	07/28/23 12:35	KNC	

Eurofins Knoxville

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Client Sample ID: Method Blank

Lab Sample ID: MB 140-75406/5-B ^5

Date Collected: N/A Date Received: N/A

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis	6010B SEP		5			75894	07/28/23 13:24	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank

Lab Sample ID: MB 140-75511/5-A

Date Collected: N/A Date Received: N/A

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis	6010B SEP		1			75894	07/28/23 14:14	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Method Blank

Lab Sample ID: MB 140-75565/5-A

Date Collected: N/A

Matrix: Solid

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis	6010B SEP		1			75976	07/31/23 12:16	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-75184/6-B ^5

Date Collected: N/A

Date Received: N/A

Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis Instrumer	6010B SEP nt ID: DUO		5			75871	07/27/23 12:52	KNC	EET KNX

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-75187/6-A

Date Collected: N/A Date Received: N/A

Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		1			75976	07/31/23 12:36	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-75227/6-B ^5

Matrix: Solid

EET KNX

EET KNX

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis	6010B SEP		5			75871	07/27/23 13:41	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-75274/6-B

Date Collected: N/A Date Received: N/A

Matrix: Solid

Batch Dil Initial Batch Batch Final Prepared **Prep Type** Method Type Run **Factor Amount Amount** Number or Analyzed Analyst Lab Step 3 SEP Non-Crystalline 5.00 g 25 mL 75274 07/12/23 08:00 LAH **EET KNX** Step 3 Prep 3010A 5 mL 50 mL 75294 07/13/23 08:00 LAH **EET KNX** Step 3 Analysis 6010B SEP 1 75871 07/27/23 14:31 KNC **EET KNX** Instrument ID: DUO

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-75320/6-B

Date Collected: N/A

Matrix: Solid

Date Received: N/A

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Amount Amount Number Type **Factor** or Analyzed Run Analyst Lab Step 4 SEP Metal Hydroxide 5.00 g 25 mL 75320 07/13/23 08:00 LAH **EET KNX** Step 4 5 mL 50 mL 75407 Prep 3010A 07/17/23 08:00 LAH

1

Analysis 6010B SEP Instrument ID: DUO

Lab Sample ID: LCS 140-75406/6-B ^5

07/28/23 12:40 KNC

75894

Step 4

Client Sample ID: Lab Control Sample Date Collected: N/A **Matrix: Solid** Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis	6010B SEP		5			75894	07/28/23 13:29	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 140-75511/6-A

Date Collected: N/A

Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis	6010B SEP		1			75894	07/28/23 14:19	KNC	EET KNX
	Instrumer	nt ID: DUO								

Eurofins Knoxville

Job ID: 140-32513-1

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 140-75565/6-A Date Collected: N/A

Matrix: Solid

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 7	Prep	Residual			1.00 g	50 mL	75565	07/20/23 08:00	LAH	EET KNX
Step 7	Analysis	6010B SEP		1			75976	07/31/23 12:21	KNC	EET KNX
	Instrumer	it ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-75184/7-B ^5

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 1	SEP	Exchangeable			5.00 g	25 mL	75184	07/10/23 12:30	LAH	EET KNX
Step 1	Prep	3010A			5 mL	50 mL	75207	07/11/23 08:00	LAH	EET KNX
Step 1	Analysis	6010B SEP		5			75871	07/27/23 12:57	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-75187/7-A

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Total			1.00 g	50 mL	75187	07/21/23 08:00	LAH	EET KNX
Total/NA	Analysis	6010B		1			75976	07/31/23 12:41	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-75227/7-B ^5

Matrix: Solid

Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 2	SEP	Carbonate			5.00 g	25 mL	75227	07/11/23 08:00	LAH	EET KNX
Step 2	Prep	3010A			5 mL	50 mL	75260	07/12/23 08:00	LAH	EET KNX
Step 2	Analysis	6010B SEP		5			75871	07/27/23 13:46	KNC	EET KNX

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-75274/7-B

Matrix: Solid

Date Collected: N/A Date Received: N/A

Prep Type Step 3	Batch Type SEP	Batch Method Non-Crystalline	Run	Dil Factor	Initial Amount 5.00 q	Final Amount 25 mL	Batch Number 75274	Prepared or Analyzed 07/12/23 08:00	Analyst	Lab EET KNX
Step 3	Prep	3010A			5.00 g 5 mL	50 mL	75294	07/13/23 08:00		EET KNX
Step 3	Analysis Instrumer	6010B SEP nt ID: DUO		1			75871	07/27/23 14:36	KNC	EET KNX

Eurofins Knoxville

8/3/2023

Page 30 of 36

10

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 140-32513-1

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 140-75320/7-B

Date Collected: N/A Date Received: N/A **Matrix: Solid**

Batch Dil Initial Final Batch Batch Prepared **Prep Type** Method Factor Number or Analyzed Type Run Amount **Amount** Analyst Lab Step 4 SEP Metal Hydroxide 5.00 g 75320 07/13/23 08:00 LAH EET KNX 25 mL 3010A 75407 Step 4 5 mL 50 mL 07/17/23 08:00 LAH Prep **EET KNX** Step 4 Analysis 6010B SEP 1 75894 07/28/23 12:44 KNC **EET KNX** Instrument ID: DUO

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 140-75406/7-B ^5

Date Collected: N/A Matrix: Solid

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 5	SEP	Organic-Bound			5.00 g	75 mL	75406	07/17/23 08:00	LAH	EET KNX
Step 5	Prep	3010A			5 mL	50 mL	75487	07/19/23 08:00	LAH	EET KNX
Step 5	Analysis	6010B SEP		5			75894	07/28/23 13:34	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 140-75511/7-A

Date Collected: N/A

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Step 6	SEP	Acid/Sulfide			5.00 g	250 mL	75511	07/19/23 08:00	LAH	EET KNX
Step 6	Analysis	6010B SEP		1			75894	07/28/23 14:24	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 140-75565/7-A

Date Collected: N/A

Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Step 7	Prep	Residual	<u>Kuli</u>	-actor	1.00 g	50 mL	75565	07/20/23 08:00		EET KNX
Step 7	Analysis	6010B SEP		1	-		75976	07/31/23 12:26	KNC	EET KNX
	Instrumer	nt ID: DUO								

Client Sample ID: VER-35 55-60 20230624 Lab Sample ID: 140-32513-1 DU

Date Collected: 06/24/23 14:20 Date Received: 07/03/23 11:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			75814	07/26/23 15:29	ACW	EET KNX
	Instrumen	t ID: NOFOLIIP								

Eurofins Knoxville

Client: Geosyntec Consultants Inc

Job ID: 140-32513-1 Project/Site: Vermilion SEP

Client Sample ID: VER-35 55-60 20230624

Lab Sample ID: 140-32513-1 DU Date Collected: 06/24/23 14:20 **Matrix: Solid**

Date Received: 07/03/23 11:15 Percent Solids: 95.4

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA Total/NA	Prep Analysis Instrumer	Total 6010B nt ID: DUO		1	1.00 g	50 mL	75187 75976	07/21/23 08:00 07/31/23 13:28		EET KNX EET KNX
Total/NA Total/NA	Prep Analysis Instrumer	Total 6010B nt ID: DUO		2	1.00 g	50 mL	75187 75976	07/21/23 08:00 07/31/23 14:17		EET KNX EET KNX
Step 1 Step 1 Step 1	SEP Prep Analysis Instrumer	Exchangeable 3010A 6010B SEP at ID: DUO		4	5.00 g 5 mL	25 mL 50 mL	75184 75207 75871	07/10/23 12:30 07/11/23 08:00 07/27/23 13:06	LAH	EET KNX EET KNX EET KNX
Step 2 Step 2 Step 2	SEP Prep Analysis Instrumer	Carbonate 3010A 6010B SEP nt ID: DUO		3	5.00 g 5 mL	25 mL 50 mL	75227 75260 75871	07/11/23 08:00 07/12/23 08:00 07/27/23 13:56	LAH	EET KNX EET KNX EET KNX
Step 3 Step 3 Step 3	SEP Prep Analysis Instrumer	Non-Crystalline 3010A 6010B SEP nt ID: DUO		1	5.00 g 5 mL	25 mL 50 mL	75274 75294 75871	07/12/23 08:00 07/13/23 08:00 07/27/23 14:45	LAH	EET KNX EET KNX EET KNX
Step 4 Step 4 Step 4	SEP Prep Analysis Instrumer	Metal Hydroxide 3010A 6010B SEP at ID: DUO		1	5.00 g 5 mL	25 mL 50 mL	75320 75407 75894	07/13/23 08:00 07/17/23 08:00 07/28/23 12:54	LAH	EET KNX EET KNX EET KNX
Step 5 Step 5 Step 5	SEP Prep Analysis Instrumer	Organic-Bound 3010A 6010B SEP at ID: DUO		5	5.00 g 5 mL	75 mL 50 mL	75406 75487 75894	07/17/23 08:00 07/19/23 08:00 07/28/23 13:44	LAH	EET KNX EET KNX EET KNX
Step 6 Step 6	SEP Analysis Instrumer	Acid/Sulfide 6010B SEP nt ID: DUO		1	5.00 g	250 mL	75511 75894	07/19/23 08:00 07/28/23 14:34		EET KNX EET KNX
Step 7 Step 7	Prep Analysis Instrumer	Residual 6010B SEP at ID: DUO		1	1.00 g	50 mL	75565 75976	07/20/23 08:00 07/31/23 12:51		EET KNX EET KNX

Laboratory References:

EET KNX = Eurofins Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Accreditation/Certification Summary

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP Job ID: 140-32513-1

Laboratory: Eurofins Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	N/A	
ANAB	Dept. of Defense ELAP	L2311	02-13-25
ANAB	Dept. of Energy	L2311.01	02-13-25
ANAB	ISO/IEC 17025	L2311	02-13-25
Arkansas DEQ	State	88-0688	06-16-24
Colorado	State	TN00009	02-29-24
Connecticut	State	PH-0223	09-30-23
Florida	NELAP	E87177	06-30-24
Georgia (DW)	State	906	07-27-25
Hawaii	State	NA	07-27-23 *
Kansas	NELAP	E-10349	10-31-23
Kentucky (DW)	State	90101	12-31-23
Louisiana (All)	NELAP	83979	06-30-24
Louisiana (DW)	State	LA019	12-31-23
Maryland	State	277	03-31-24
Michigan	State	9933	07-27-25
Nevada	State	TN00009	07-31-23 *
New Hampshire	NELAP	2999	01-17-24
New Jersey	NELAP	TN001	07-01-24
New York	NELAP	10781	03-31-24
North Carolina (DW)	State	21705	07-31-24
North Carolina (WW/SW)	State	64	12-31-23
Oklahoma	State	9415	08-31-23
Oregon	NELAP	TNI0189	01-01-24
Pennsylvania	NELAP	68-00576	12-01-23
Tennessee	State	02014	07-27-25
Texas	NELAP	T104704380-22-17	08-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-24
USDA	US Federal Programs	525-22-279-18762	10-06-25
Utah	NELAP	TN00009	07-31-24
Virginia	NELAP	460176	09-14-23
Washington	State	C593	01-19-24
West Virginia (DW)	State	9955C	12-31-23
West Virginia DEP	State	345	04-30-24
Wisconsin	State	998044300	08-31-23

ુ

4

5

7

10

11

12

 $^{^{\}star}\,\text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: Geosyntec Consultants Inc Project/Site: Vermilion SEP

Method **Method Description** Protocol Laboratory 6010B SEP Metals (ICP) - Total SW846 **EET KNX** 6010B SEP SEP Metals (ICP) SW846 **EET KNX** Percent Moisture Moisture **EPA** EET KNX 3010A Preparation, Total Metals SW846 EET KNX Acid/Sulfide Sequential Extraction Procedure, Acid/Sulfide Fraction TAL-KNOX **EET KNX** Carbonate Sequential Extraction Procedure, Carbonate Fraction TAL-KNOX EET KNX Exchangeable Sequential Extraction Procedure, Exchangeable Fraction TAL-KNOX **EET KNX** Metal Hydroxide Sequential Extraction Procedure, Metal Hydroxide Fraction TAL-KNOX **EET KNX** Non-Crystalline Sequential Extraction Procedure, Non-crystalline Materials TAL-KNOX **EET KNX** Organic-Bound Sequential Extraction Procedure, Organic Bound Fraction TAL-KNOX **EET KNX** Residual Sequential Extraction Procedure, Residual Fraction TAL-KNOX EET KNX Total Preparation, Total Material TAL-KNOX **EET KNX**

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-KNOX = TestAmerica Laboratories, Knoxville, Facility Standard Operating Procedure.

Laboratory References:

EET KNX = Eurofins Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Job ID: 140-32513-1

3

Л

5

7

8

9

12

Environment Testing TestAmenca

🖏 eurofins

5815 Middlebrook Pike

Knoxville, TN 37921-5947

phone 865.291.3000 fax 865.584.4315	Regula	Regulatory Program:		□ md □	□ NPDES □	□ RCRA □	Other:		TestAmerica	TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmeric	Eurofins TestAmeric
Client Contact	Project Manager: Allison Kreinberg	ager: Allis	on Kreinb	erg	Site	Site Contact: NA	٩Þ	Date:	ü	COC No:	
Geosyntec Consultants, Inc.	Tel/Fax:				Lab	Contact: F	Lab Contact: Ryan Henry	Car	Carrier:	1 of	_1 cocs
941 Chatham Lane, Suite 103	1	Analysis Turnaround Time	naround	ime						Sampler:	
Columbus, OH 43221	☐ CALENDAR DAYS	DAYS	☐ WORKING DAYS	ING DAYS						For Lab Use Only:	ıly:
(614) 468-0421 Phone		TAT if different from Below	Below		\ N	711				Walk-in Client:	
Doing A Nove Nichola	X (2 weeks	SS .							Lab Sampling:	
riuject ivalile; visita Site: Vermilion		1 week	* '							. OA O	
ore: vernimon	<u> </u>	2 days	s							100 / 200 NO	
± 0		1 Day									
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	ې م بې چ Filtered <i>S</i>	Perform <i>I</i> / 6010B SE				Sample	Sample Specific Notes:
VER-35 55-60 20230624	6/24/2023	1420	ŋ	Solid					And the second s	ett er passa son stötte statiste statiste son	
VER-35 60-63 20230624	6/24/2023	1450	O	Solid							
VER-70 75-80 20230623	6/23/2023	1700	9	Solid		×					
P											
900											
35.0										A CONTRACTOR OF THE CONTRACTOR	
The Custody Seal											
Received Ambien + M: 20.0/CT: 20.38											
DH 713/23											
18xx Fedex 7804 1929 1869 G									Custoo	, si	
								= -\	140-32513 Challin		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	; 5=NaOH; 6=	Other		-							
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the	A Waste Co	des for th	s sample		ample Dis	posal (A fee	may be ass	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	tained longer than 1 m	ionth)
☑ Non-Hazard ☐ Flammable ☐ Skin Irritant	□ Poison B		□ Unknown	_		☐ Return to Client	Client	☐ Disposal by Lab	by Lab	for Months	
ictions/QC											
Custody Seals Intact:	Custody Seal No.:	No.:			ilmos		Cooler Temp. (°C): Obs'd:	_;p,sq0 :(0°)	Corr'd:	Therm ID No.:	
Relinquished by: Juffur 1000	Company:	3	MEC	Date/Time: 1	,,,	Received by:),	7.7	Company:	Date/Time: 7/3/73	11:15 9:05 48.73
Belinquished by:	Company:			Date/Time:		Received by:			Company:	Date/Time:	A LINE AND

Form No. CA-C-WI-002, Rev. 4.21, dated 4/4/2019

Date/Time:

Company:

Received in Laboratory by:

Company: Company:

3/3/6/23

Date/Time: Date/Time:

EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Loc: 140 32513

Log In Number:

Review Items	Yes	Š	NA	If No, what was the problem?	Comments/Actions Taken
1. Are the shipping containers intact?	7			☐ Containers, Broken	
2. Were ambient air containers received intact?			1	☐ Checked in lab	['] a
3. The coolers/containers custody seal if present, is it intact?			7	□ Yes	
4. Is the cooler temperature within limits? (> freezing temp of water to 6 °C VOST: 10°C)			,	Cooler Out of Temp, Client	
Thermometer ID: Sc13			7	Confected, rroceed/Cancel	
Correction factor: +0-3-C				Receipt	
5. Were all of the sample containers received intact?	7			☐ Containers, Broken	
6. Were samples received in appropriate containers?			/	☐ Containers, Improper; Client Contacted: Proceed/Cancel	
7. Do sample container labels match COC?				☐ COC & Samples Do Not Match	
(IDs, Dates, Times)	\			☐ COC Incorrect/Incomplete	
8. Were all of the samples listed on the COC received?	\			1	
	7				
9. Is the date/time of sample collection noted?	7			☐ COC; No Date/Time; Client	
2000 t. 1 5. 1. 1 1 AX 01				Contacted	Labeling Verified by: Date:
10. Was the sampler identified on the COC?		7		☐ Sampler Not Listed on COC	
	7			☐ COC Incorrect/Incomplete	pH test strip lot number:
12. Are tests/parameters listed for each sample?				☐ COC No tests on COC	
13. Is the matrix of the samples noted?				□ COC Incorrect/Incomplete	
14. Was COC relinquished? (Signed/Dated/Timed)	\			□ COC Incorrect/Incomplete	Box 16A: pH Box 18A: Residual Preservation Chlorine
15. Were samples received within holding time?				☐ Holding Time - Receipt	
16. Were samples received with correct chemical				D pH Adjusted, pH Included	Lot Number:
preservative (excluding Encore)?			7	(See box 16A)	Exp Date:
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				☐ Incorrect Preservative	Analyst:
1/. Were VOA samples received without headspace?			7	☐ Headspace (VOA only)	Date:
18. Did you check for residual chlorine, if necessary?	***************************************		/	☐ Residual Chlorine	lime:
Chlorine test strip lot number:			7		
19. For 1613B water samples is pH<9?			2	☐ If no, notify lab to adjust	
20. For rad samples was sample activity info. Provided?)	☐ Project missing info	
Project #: 1 400 199 PM Instructions:					
				The state of the s	
Sample Receiving Associate: (Lean Mind			Date:_	7/3/23	QA026R32.doc, 062719

ATTACHMENT 4 X-Ray Diffraction Laboratory Analytical Report

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for: **Environmental Services**

Project Number/ LIMS No. Custom XRD/MI4526-AUG23

Sample Receipt: August 10, 2023

Sample Analysis: August 31, 2023

Reporting Date: September 13, 2023

BRUKER AXS D8 Advance Diffractometer Instrument:

Co radiation, 35 kV, 40 mA; Detector: LYNXEYE **Test Conditions:**

> Regular Scanning: Step: 0.02°, Step time: 0.75s, 20 range: 6-80° Clay Section Scanning: Step: 0.01°, Step time:0.2s, 20 range: 3-40°

PDF2/PDF4 powder diffraction databases issued by the International Center Interpretations:

for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.

0.5-2%. Strongly dependent on crystallinity. **Detection Limit:**

Contents: 1) Method Summary

2) Quantitative XRD Results

3) XRD Pattern(s)

Zhihai (Adrian) Zhang, Ph.D

Mineralogist

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Natural Resources Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada Inc. - Minerals: https://www.scc.ca/en/search/palcan.

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Clay Mineral Separation and Identification:

Clay minerals are typically fine-grained (<2 µm) phyllosilicates in sedimentary rock. Due to the poor crystallinity and fine size of clay minerals, separation of the clay fraction from bulk samples by centrifuge is required. A slide of the oriented clay fraction is prepared and scanned followed by a series of procedures (the addition of ethylene glycol and high temperature heating). Clay minerals are identified by their individual diffraction patterns and changes in their diffraction pattern after different treatments. Clay speciation and mineral identification of the bulk sample are performed using DIFFRACplus EVA (Bruker AXS).

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

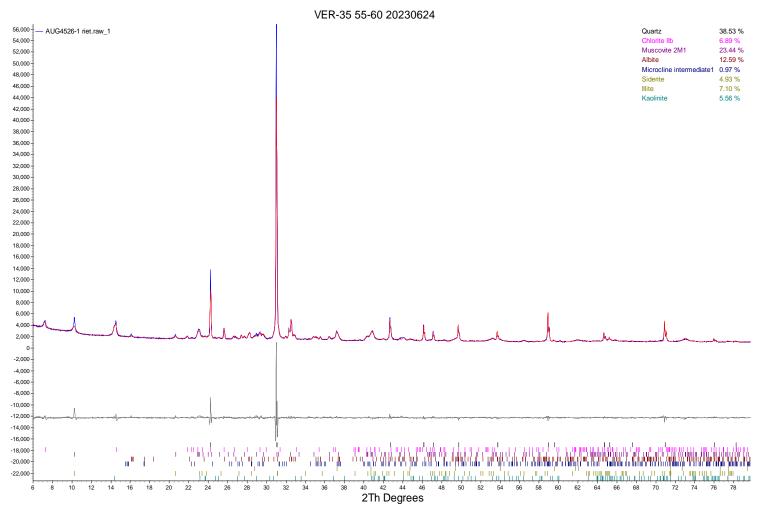
Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

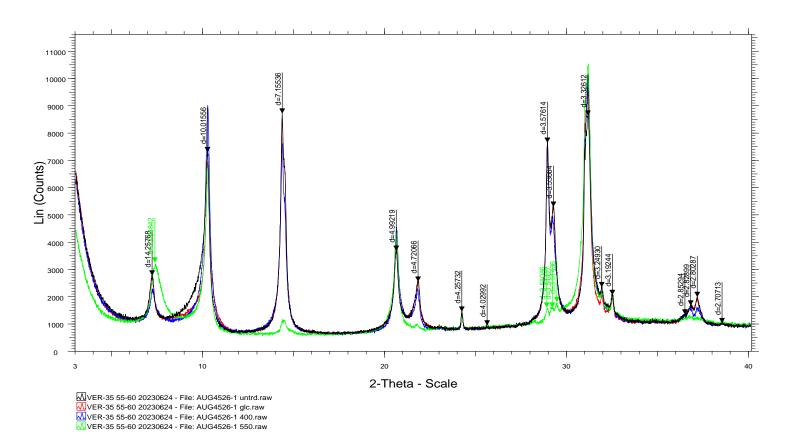
Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

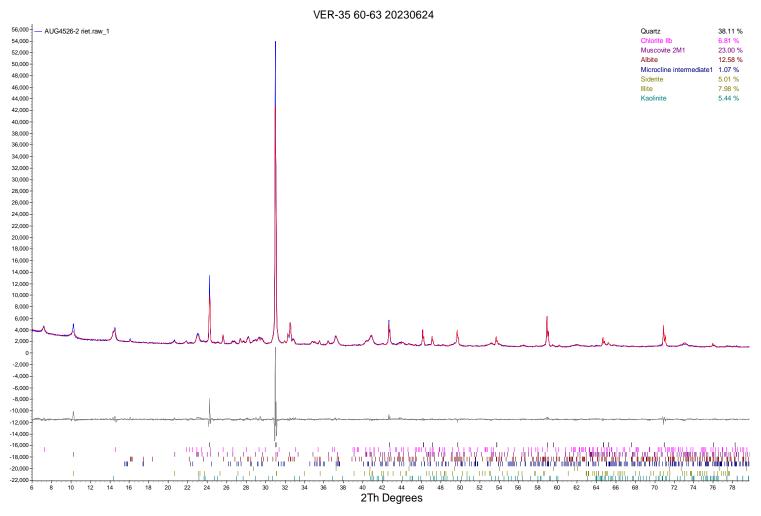
Mineral/Compound	VER-35 55-60 20230624 AUG4526-01	VER-35 60-63 20230624 AUG4526-02	VER-70 30-40 20230623 AUG4526-03	VER-70 41-42 20230623 AUG4526-04	VER-70 75-80 20230623 AUG4526-05
	(wt %)				
Quartz	38.5	38.1	48.6	48.2	35.0
Chlorite	6.9	6.8	1.2	3.6	7.7
Muscovite	23.4	23.0	13.5	15.2	27.0
Albite	12.6	12.6	10.6	10.8	11.5
Microcline	1.0	1.1	1.3	1.1	0.7
Siderite	4.9	5.0	0.9	0.1	5.4
Actinolite	-	-	0.8	-	-
Dolomite	-	-	11.7	11.7	-
Clays					
Illite	7.1	8.0	7.4	5.6	5.2
Kaolinite	5.6	5.4	3.2	3.7	7.5
Montmorillonite	-	-	0.8	-	-
TOTAL	100	100	100	100	100


Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

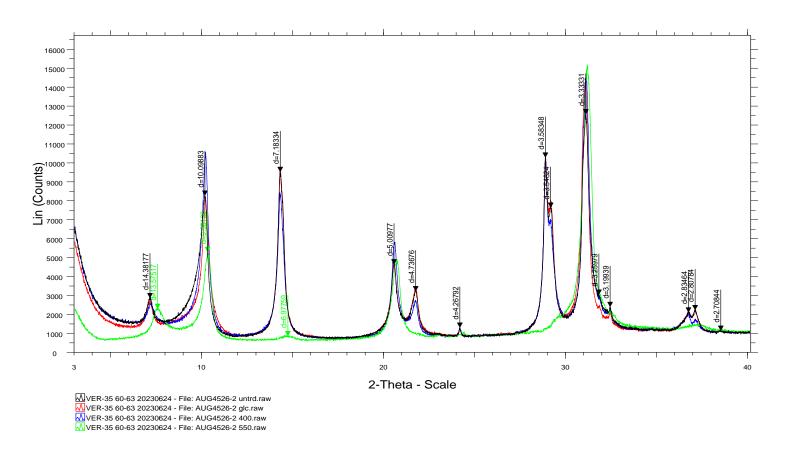
Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

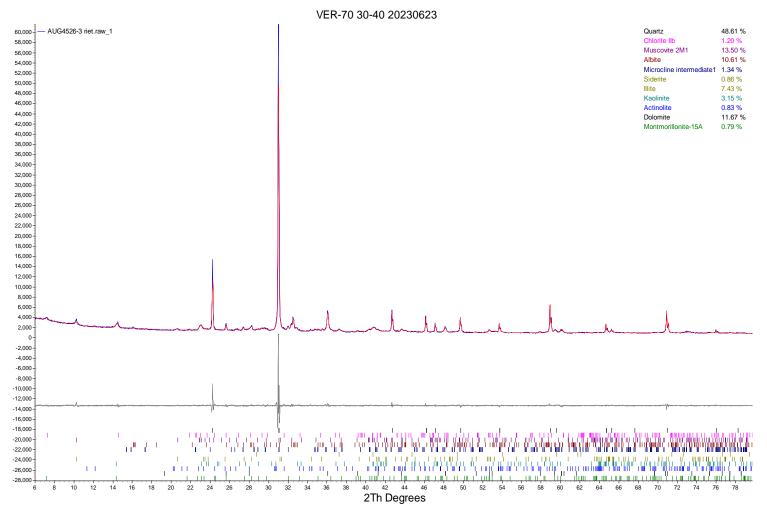
The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.


Mineral/Compound	Formula
Quartz	SiO ₂
Chlorite	$(Fe,(Mg,Mn)_5,AI)(Si_3AI)O_{10}(OH)_8$
Muscovite	$KAI_2(AISi_3O_{10})(OH)_2$
Albite	NaAlSi ₃ O ₈
Microcline	KAISi ₃ O ₈
Siderite	FeCO ₃
Illite	$(K,H_3O)(Al,Mg,Fe)_2(Si,Al)_4O_{10}[(OH)_2,(H_2O)]$
Kaolinite	$Al_2Si_2O_5(OH)_4$
Actinolite	$Ca_2(Mg,Fe)_5Si_8O_{22}(OH)_2$
Dolomite	CaMg(CO ₃) ₂
Montmorillonite	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ ·10H ₂ O

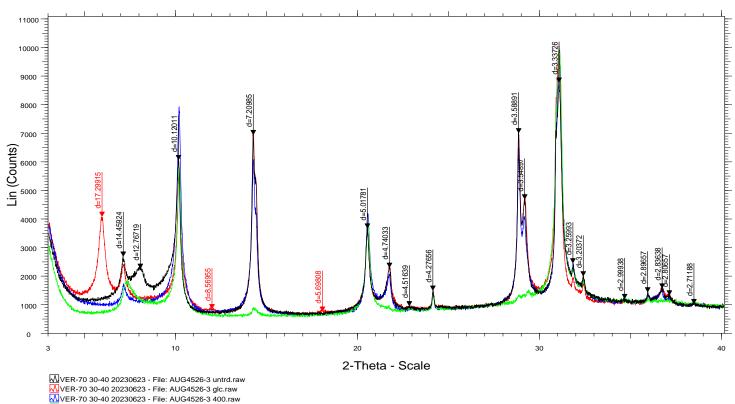


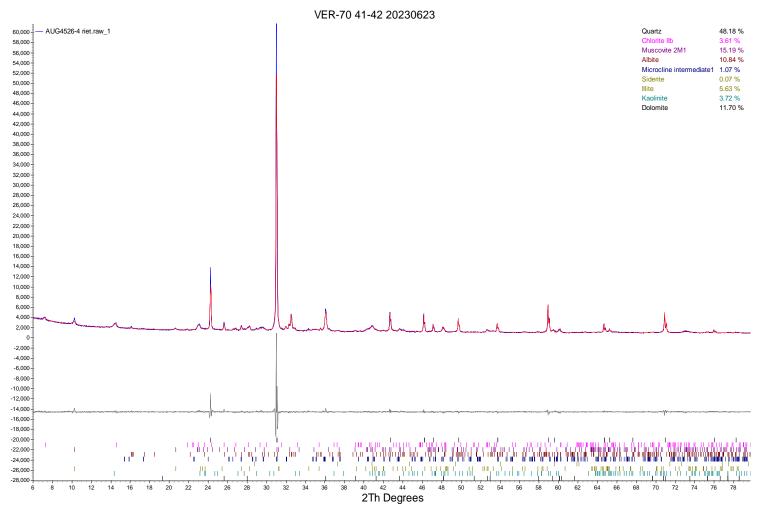
VER-35 55-60 20230624



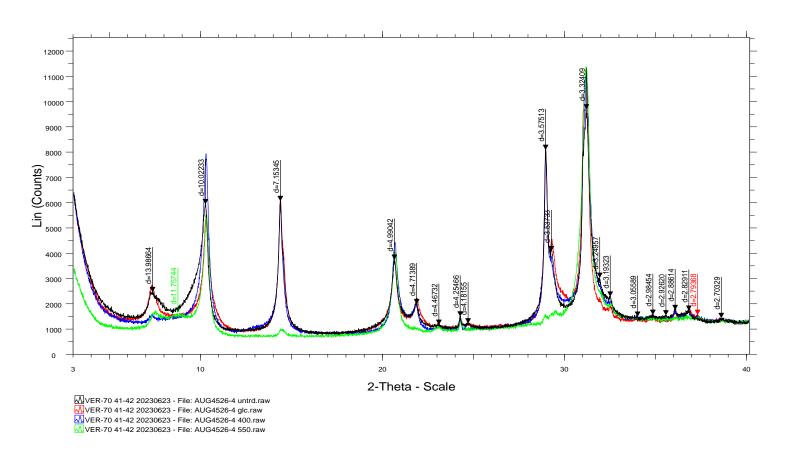


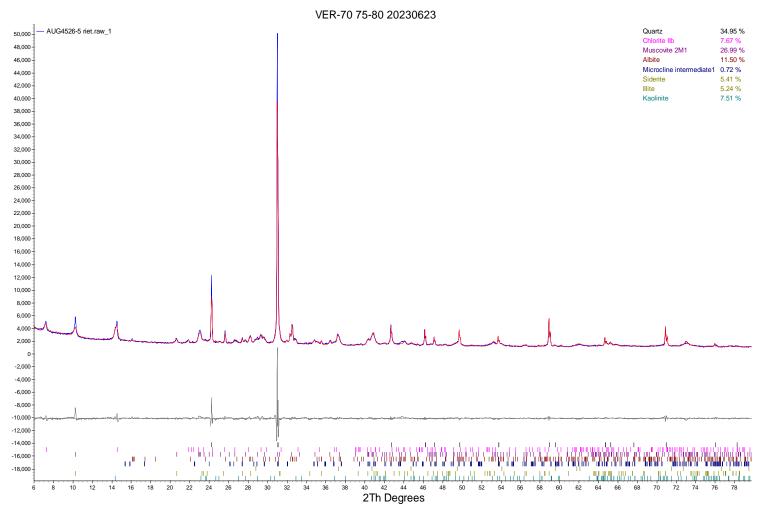
VER-35 60-63 20230624



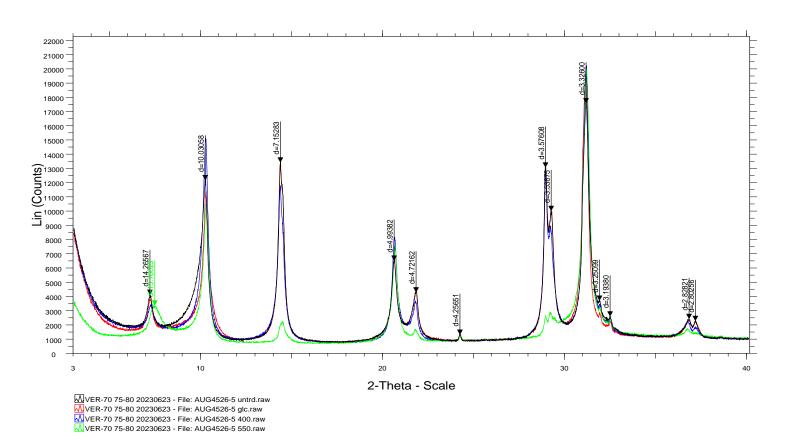


VER-70 30-40 20230623


VER-70 30-40 20230623 - File: AUG4526-3 550.raw



VER-70 41-42 20230623



VER-70 75-80 20230623

ATTACHMENT 5 Principal Component Analysis Input Data

ELECTRONIC PCA DATA FOR ATTACHMENT 5

35 I.A.C. § 845: ALTERNATIVE SOURCE DEMONSTRATION VERMILION POWER PLANT NEW EAST ASH POND OAKWOOD, IL

Well	HSU	Date	Well Type	pH (SU)	Alkalinity, bicarbonate (mg/L)	Alkalinity, carbonate (mg/L)	Barium (mg/L)	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)
16A	BCU	4/1/2021	Downgradient	7.50	390	1.5	0.261	0.675	40.8	131	0.77
16A	BCU	4/21/2021	Downgradient	7.20	407	1.5	0.335	0.613	71.10	106	0.64
16A	BCU	5/11/2021	Downgradient	7.40	361	1.5	0.245	0.807	36.6	139	0.78
16A	BCU	6/3/2021	Downgradient	7.26	405	1.5	0.272	0.716	51.60	128	0.68
16A	BCU	6/17/2021	Downgradient	7.40	406	1.5	0.251	0.746	42.20	144	0.78
16A	BCU	7/8/2021	Downgradient	7.31	404	1.5	0.249	0.768	38.00	151	0.77
16A	BCU	7/27/2021	Downgradient	7.45 7.50	390	1.5	0.248	0.794	35.30	163	0.84
16A 35D	BCU BCU	8/17/2021 4/1/2021	Downgradient Downgradient	8.20	393 707	1.5 1.5	0.261	0.755 2.01	33.30 112.0	176 529	0.84
35D	BCU	4/1/2021	Downgradient	7.76	533	1.5	0.0294	1.8	93.60	281	0.76
35D	BCU	6/3/2021	Downgradient	7.25	637	1.5	0.0234	2.5	98.10	461	0.03
35D	BCU	6/17/2021	Downgradient	7.25	603	1.5	0.14	1.8	99.40	393	0.75
35D	BCU	7/8/2021	Downgradient	7.22	582	1.5	0.0297	1.9	86.00	372	0.74
35D	BCU	7/27/2021	Downgradient	7.37	507	1.5	0.0263	1.5	70.40	234	0.79
35D	BCU	8/17/2021	Downgradient	7.30	491	1.5	0.0269	1.4	65.7	199	0.76
70D	BCU	4/1/2021	Downgradient	7.60	262	1.5	0.3360	0.712	39.6	317	0.76
70D	BCU	4/21/2021	Downgradient	7.28	334	1.5	0.521	1.01	48.1	517	0.57
70D	BCU	6/3/2021	Downgradient	7.03	416	1.5	0.687	1.56	68.6	665	0.47
70D	BCU	6/17/2021	Downgradient	7.14	443	1.5	0.7260	1.33	73.1	680	0.5
70D	BCU	7/8/2021	Downgradient	6.85	527	1.5	0.954	1.58	82.5	735	0.41
70D	BCU	7/27/2021	Downgradient	6.96	540	1.5	0.734	1.54	78.1	745	0.44
70D	BCU	8/17/2021	Downgradient	6.84	610	1.5	0.761	1.54	91.5	716	0.36
71D	BCU	4/1/2021	Downgradient	7.60	258	1.5	0.299	0.58	37.7	172	0.92
71D	BCU	6/17/2021	Downgradient	7.15	475	1.5	0.4	1.1	28.7	563	0.73
71D	BCU	8/17/2021	Downgradient	6.95	628	1.5	0.677	1.3	34.9	674	0.56
22	BCU	4/1/2021	Upgradient	7.40	390	1.5	0.0723	0.41	41.5	23	0.43
22	BCU	4/20/2021	Upgradient	7.58 7.29	407	1.5	0.0798	0.4	37.5	11	0.4000
22	BCU	5/10/2021	Upgradient	7.29	395	1.5	0.0795	0.433	45.7	11 7	0.4200
22	BCU BCU	6/3/2021 6/17/2021	Upgradient	7.23	390 406	1.5 1.5	0.0787	0.361 0.377	48.3 50.3	7	0.3800
22	BCU	7/8/2021	Upgradient Upgradient	7.20	412	1.5	0.0791	0.348	47.7	7	0.3700
22	BCU	7/27/2021	Upgradient	7.34	401	1.5	0.0795	0.311	48.2	7	0.39
22	BCU	8/17/2021	Upgradient	7.26	402	1.5	0.0785	0.34	47.1	7	0.38
NED1	CCR	4/1/2021	CCR	9.20	1.5	81	0.032	18.6	497.0	44	0.3200
NED1	CCR	4/21/2021	CCR	8.86	4	62	0.029	19.3	472.0	32	0.3800
NED1	CCR	5/11/2021	CCR	7.88	132	1.5	0.0289	14	674.0	18	0.2
NED1	CCR	6/4/2021	CCR	7.55	117	1.5	0.0319	13.5	532.0	18	0.24
NED1	CCR	8/17/2021	CCR	8.73	18	41	0.0314	18.3	531.0	25	0.29
10	UCU	4/1/2021	Upgradient	6.80	550	1.5	0.079	0.0587	182.0	6	0.13
10	UCU	4/21/2021	Upgradient	6.80	546	1.5	0.047	0.0587	193.0	6	0.14
10	UCU	5/10/2021	Upgradient	6.76	476	1.5	0.068	0.053	160.0	4	0.14
10	UCU	6/3/2021	Upgradient	6.74	579	1.5	0.0795	0.0835	186.0	5	0.14
10	UCU	6/17/2021	Upgradient	6.76	550	1.5	0.0625	0.111	186.0	6	0.14
10	UCU	7/8/2021	Upgradient	6.69 6.80	561	1.5	0.068	0.0499	166.0	5	0.13
10	UCU	7/27/2021	Upgradient	6.69	550	1.5	0.0712	0.237	182.0	4	0.14
10 70S	UCU	8/17/2021 4/1/2021	Upgradient Downgradient	7.00	582 310	1.5 1.5	0.0772	0.0695 0.457	192.0 253.0	5 19	0.13 0.14
70S	UU	4/21/2021	Downgradient	6.94	270	1.5	0.0205	0.437	281.0	17	0.14
70S	UU	5/10/2021	Downgradient	6.99	262	1.5	0.0203	0.382	270.0	16	0.14
70S	UU	6/3/2021	Downgradient	6.91	272	1.5	0.0165	0.424	245.0	15	0.14
70S	UU	6/17/2021	Downgradient	6.85	278	1.5	0.0187	0.363	250.0	15	0.15
70S	UU	7/8/2021	Downgradient	6.80	305	1.5	0.0172	0.253	220.0	14	0.16
70S	UU	7/27/2021	Downgradient	7.01	287	1.5	0.01	0.556	229.0	11	0.17
705	UU	8/17/2021	Downgradient	6.87	272	1.5	0.02	0.538	232.0	15	0.16
715	UU	4/1/2021	Downgradient	6.90	422	1.5	0.0476	0.179	115.0	2	0.18
715	UU	4/21/2021	Downgradient	6.73	419	1.5	0.0534	0.215	116.0	3	0.17
715	UU	5/12/2021	Downgradient	6.84	403	1.5	0.0487	0.227	124.0	3	0.18
715	UU	6/3/2021	Downgradient	6.71	419	1.5	0.0446	0.229	116.0	2	0.18
715	UU	6/17/2021	Downgradient	6.76	422	1.5	0.0421	0.219	117.0	2	0.19
715	UU	7/8/2021	Downgradient	6.60	462	1.5	0.0493	0.173	128.0	2	0.19
715	UU	7/27/2021	Downgradient	6.83	421	1.5	0.0462	0.251	132.0	2	0.2
71S	UU	8/17/2021	Downgradient	6.73	442	1.5	0.0672	0.272	122.0	3	0.19

Notes:

mg/L = milligrams per liter

SU= standard units

HSU = hydrostratigraphic unit

CCR = coal combustion residual

BCII = Bedrock Confining Unit

BCU = Bedrock Confining Unit UCU = Upper Confining Unit

UU = Upper Unit

Non-detect values were replaced with half of detection limit.